Compliance with Long-Term Dietary Salt Restriction in Hypertensive Outpatients

1994 ◽  
Vol 16 (6) ◽  
pp. 729-739 ◽  
Author(s):  
Junichiro Hashimoto ◽  
Yutaka Imai ◽  
Naoyoshi Minami ◽  
Masanori Munakata ◽  
Hiromichi Sakuma ◽  
...  
2007 ◽  
Vol 292 (5) ◽  
pp. F1490-F1500 ◽  
Author(s):  
Markus Schafflhuber ◽  
Nicola Volpi ◽  
Anke Dahlmann ◽  
Karl F. Hilgers ◽  
Francesca Maccari ◽  
...  

The idea that an osmotically inactive Na+ storage pool exists that can be varied to accommodate states of Na+ retention and/or Na+ loss is controversial. We speculated that considerable amounts of osmotically inactive Na+ are lost with growth and that additional dietary salt excess or salt deficit alters the polyanionic character of extracellular glycosaminoglycans in osmotically inactive Na+ reservoirs. Six-week-old Sprague-Dawley rats were fed low-salt (0.1%; LS) or high-salt (8%; HS) diets for 1 or 4 wk. At their death, we separated the tissues and determined their Na+, K+, and water content. Three weeks of growth reduced the total body Na+ content relative to dry weight (rTBNa+) by 23%. This “growth-programmed” Na+ loss originated from the bone and the completely skinned and bone-removed carcasses. The Na+ loss was osmotically inactive (45–50%) or osmotically active (50–55%). In rats aged 10 wk, compared with HS, 4 wk of LS reduced rTBNa+ by 9%. This dietary-induced Na+ loss was osmotically inactive (≈50%) and originated largely from the skin, while ≈50% was osmotically active. LS for 1 wk did not reduce skin Na+ content. The mobilization of osmotically inactive skin Na+ with long-term salt deprivation was associated with decreased negatively charged skin glycosaminoglycan content and thereby a decreased water-free Na+ binding capacity in the extracellular matrix. Our data not only serve to explain discrepant results in salt balance studies but also show that glycosaminoglycans may provide an actively regulated interstitial cation exchange mechanism that participates in volume and blood pressure homeostasis.


2005 ◽  
Vol 180 (2) ◽  
pp. 271-276 ◽  
Author(s):  
Ognen Ivanovski ◽  
Dorota Szumilak ◽  
Thao Nguyen-Khoa ◽  
Michele Dechaux ◽  
Ziad A. Massy ◽  
...  

Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 724-724
Author(s):  
Shyama M E Masilamani ◽  
Gheun-Ho Kim ◽  
Mark A Knepper

P170 The mineralocorticoid hormone, aldosterone increases renal tubule Na absorption via increases in the protein abundances of the α-subunit of the epithelial sodium channel (ENaC) and the 70 kDa form of the γ- subunit of ENaC (JCI 104:R19-R23). This study assesses the affect of dietary salt restriction on the regulation of the epithelial sodium channel (ENaC) in the lung and distal colon, in addition to kidney, using semiquantitative immunoblotting. Rats were placed initially on either a control Na intake (0.02 meq/day), or a low Na intake (0.2 meq/day) for 10 days. The low salt treated rats demonstrated an increase in plasma aldosterone levels at day 10 (control = 0.78 + 0.32 nM; Na restricted = 3.50 + 1.30 nM). In kidney homogenates, there were marked increases in the band density of the α-subunit of ENaC (286 % of control) and the 70 kDa form of γ-subunit of ENaC (262 % of control), but no increase in the abundance of the β-subunit of ENaC. In lung homogenates, there was no significant change in the band densities of the α, β, or γ subunits of ENaC. In distal colon, there was an increase in the band density of the β-subunit of ENaC (311 % of control) and an increase in both the 85 kDa (2355% of control) and 70 kDa (843 % of control) form of the γ subunit of ENaC in response to dietary Na restriction. However, there was no significant difference in the band density of the α-subunit of ENaC. These findings demonstrate tissue specific regulation of the three subunits of ENaC in response to dietary salt restriction.


Sign in / Sign up

Export Citation Format

Share Document