scholarly journals The first case of a small supernumerary marker chromosome derived from chromosome 10 in an adult woman with an apparently normal phenotype

2015 ◽  
Vol 61 (6) ◽  
pp. 398-402
Author(s):  
Rosa Santacroce ◽  
Roberta Trunzo ◽  
Angelica Leccese ◽  
Angela Pansini ◽  
Mattia Gentile ◽  
...  
2009 ◽  
Vol 149A (12) ◽  
pp. 2768-2774 ◽  
Author(s):  
Pi-Lin Sung ◽  
Sheng-Ping Chang ◽  
Kuo-Chang Wen ◽  
Chia-Ming Chang ◽  
Ming-Jie Yang ◽  
...  

2006 ◽  
Vol 26 (10) ◽  
pp. 898-902 ◽  
Author(s):  
Chyi-Chyang Lin ◽  
Yao-Yuan Hsieh ◽  
Chung-Hsing Wang ◽  
Yueh-Chun Li ◽  
Lie-Jiau Hsieh ◽  
...  

Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 316-321
Author(s):  
Xinyue Zhang ◽  
Qingyang Shi ◽  
Yanhong Liu ◽  
Yuting Jiang ◽  
Xiao Yang ◽  
...  

Abstract Chromosomal inversion is closely related to male infertility. Inversion carriers may produce abnormal gametes, which may lead to partial duplication/deletion of the embryonic chromosome and result in spontaneous abortion, a fetus with multiple anomalies, or birth of a malformed child. Genetic counselling remains challenging for these carriers in clinical practice. We report two male carriers with inversion of chromosome 10 and review 26 reported cases. In the first case, 46,XX,inv(10)(p13q22) of the fetal chromosome was found in prenatal diagnosis; this was inherited from the paternal side with 46XY,inv(10)(p13q22). Another case was a male carrier with inv(10)(q21.2q22.1). There have been 25 (89.3%) cases of pericentric inversion and three (10.7%) cases of paracentric inversion involving chromosome 10. Of 28 cases, nine were associated with pregestational infertility of the couples, while the other 19 cases were associated with gestational infertility of the couples or normozoospermia. The breakpoints at 10p15, 10p11, 10q11, and 10q21 were associated with pregestational infertility of the couples. The breakpoints at 10p15, 10p14, 10p13, 10p12, 10p11, 10q11, 10q21, 10q22, 10q23, 10q24, 10q25, and 10q26 were related to gestational infertility of the couples or normozoospermia. Although there is a high risk of infertility or recurrent miscarriages, carriers with inversion of chromosome 10 might produce healthy offspring. Natural pregnancy can be used as a choice for inversion carriers with recurrent spontaneous abortion.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1511
Author(s):  
Tatyana V. Karamysheva ◽  
Tatyana A. Gayner ◽  
Vladimir V. Muzyka ◽  
Konstantin E. Orishchenko ◽  
Nikolay B. Rubtsov

For medical genetic counseling, estimating the chance of a child being born with chromosome abnormality is crucially important. Cytogenetic diagnostics of parents with a balanced karyotype are a special case. Such chromosome rearrangements cannot be detected with comprehensive chromosome screening. In the current paper, we consider chromosome diagnostics in two cases of chromosome rearrangement in patients with balanced karyotype and provide the results of a detailed analysis of complex chromosomal rearrangement (CCR) involving three chromosomes and a small supernumerary marker chromosome (sSMC) in a patient with impaired reproductive function. The application of fluorescent in situ hybridization, microdissection, and multicolor banding allows for describing analyzed karyotypes in detail. In the case of a CCR, such as the one described here, the probability of gamete formation with a karyotype, showing a balance of chromosome regions, is extremely low. Recommendation for the family in genetic counseling should take into account the obtained result. In the case of an sSMC, it is critically important to identify the original chromosome from which the sSMC has been derived, even if the euchromatin material is absent. Finally, we present our view on the optimal strategy of identifying and describing sSMCs, namely the production of a microdissectional DNA probe from the sSMC combined with a consequent reverse painting.


2018 ◽  
Vol 156 (4) ◽  
pp. 179-184
Author(s):  
Vida Čulić ◽  
Ruzica Lasan-Trcić ◽  
Thomas Liehr ◽  
Igor N. Lebedev ◽  
Maja Pivić ◽  
...  

We report a case of familial small supernumerary marker chromosome 15 in a phenotypically normal female with 4 recurrent spontaneous abortions and a healthy child. The initial karyotype showed a small, bisatellited, apparently metacentric marker chromosome, 47,XX,+idic(15)(q11.1), maternally inherited. The proband's mother was mosaic for the idic(15)(q11.1) without pregnancy loss. Reexamination of the proband's karyotype revealed cryptic mosaicism for 1 ring and 1 minute chromosome derived de novo from chromosome 9 in 2% of the metaphases. In FISH analysis, the patient's karyotype was mos 47,XX,+idic(15)(q11.1)mat[100]/49,XX,+idic(15)(q11.1)mat,+r(9;9;9;9),+der(9)dn[2]. The second spontaneous abortion had trisomy 9 (47,XX,+9); the third had mosaic trisomy 9 in 21% of the nuclei and isodicentric chromosome 15 in 36% of the nuclei (mos 48,XN,+9,+idic(15)(q11.1)/47,XN,+9/47,XN,+idic(15)(q11.1)/46,XN). The first and fourth abortions were not cytogenetically studied. The cause of the spontaneous abortions in this patient is likely the cryptic mosaicism for ring and minute chromosomes 9, and gonadal mosaicism is most probable, due to the 2 abortions.


2018 ◽  
Vol 156 (4) ◽  
pp. 173-178 ◽  
Author(s):  
Fernanda T. Bellucco ◽  
Rodrigo A. Fock ◽  
Hélio R. de Oliveira-Júnior ◽  
Ana B. Perez ◽  
Maria I. Melaragno

Complex small marker chromosomes (sSMCs) consist of chromosomal material derived from more than 1 chromosome. Complex sSMCs derived from chromosomes 4 and 21 are rare, with only 7 cases reported. Here, we describe a patient who presented with a complex sSMC derived from a maternal translocation between chromosomes 4 and 21, which was revealed by G-banding, MLPA, and array techniques. The marker chromosome der(21)t(4;21)(q32.1; q21.2)mat is composed of a 25.6-Mb 21pterq21.2 duplication and a 32.1-Mb 4q32.1q35.2 duplication. In comparison to patients with sSMCs derived from chromosomes 4 and 21, our patient showed a similar phenotype with neuropsychomotor developmental delay and facial dysmorphism as the most important finding, being a composition of the findings found in pure 4q and 21q duplications. The wide range of phenotypes associated with sSMCs emphasizes the importance of detailed cytogenomic analyses for an accurate diagnosis, prognosis, and genetic counseling.


Sign in / Sign up

Export Citation Format

Share Document