small supernumerary marker chromosome
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 23)

H-INDEX

9
(FIVE YEARS 2)

Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1457
Author(s):  
Tien-Yu Yao ◽  
Wan-Ju Wu ◽  
Kim-Seng Law ◽  
Mei-Hui Lee ◽  
Shun-Ping Chang ◽  
...  

This study examined the molecular characterization of a prenatal case with true fetal mosaicism of small supernumerary marker chromosome 16 (sSMC(16)). A 41-year-old female underwent amniocentesis at 19 weeks of gestation due to advanced maternal age. Chromosomal analysis for cultured amniocytes revealed a karyotype of 47,XY,+mar[4]/46,XY[16]. Spectral karyotyping and metaphase fluorescence in situ hybridization (FISH) demonstrated that the sSMC was derived from chromosome 16 (47,XY,+mar.ish der(16)(D16Z1+)[13/20]). Confined placental mosaicism was initially suspected because the prenatal ultrasound revealed a normal structure and the pregnancy was uneventful. However, interphase FISH of cord blood performed at 28 weeks of gestation showed 20% mosaicism of trisomy chromosome 16 (nuc ish(D16Z2×3)[40/200]). Chromosome microarray analysis further demonstrated 55% mosaicism of an 8.02 Mb segmental duplication at the subcentromeric region of 16p12.1p11.1 (arr[GRCh37] 16p12.1p11.1(27021975_35045499)×3[0.55]). The results demonstrated a true fetal mosaicism of sSMC(16) involving chromosome16p12.1p11.1 that is associated with chromosome 16p11.2 duplication syndrome (OMIM #614671). After non-directive genetic counseling, the couple opted for late termination of pregnancy. This case illustrated the use of multiple molecular cytogenetic tools to elucidate the origin and structure of sSMC, which is crucial for prenatal counseling, decision making, and clinical management.


2021 ◽  
Vol 64 (5) ◽  
pp. 104199
Author(s):  
G. Garza-Mayén ◽  
V. Ulloa-Avilés ◽  
C.E. Villarroel ◽  
P. Navarrete-Meneses ◽  
E. Lieberman-Hernández ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Justyna Domaradzka ◽  
Marta Deperas ◽  
Ewa Obersztyn ◽  
Anna Kucińska-Chahwan ◽  
Nathalie Brison ◽  
...  

Abstract Background Non-invasive prenatal testing (NIPT) is a rapidly developing and widely used method in the prenatal screening. Recently, the widespread use of the NIPT caused a neglecting of the limitations of this technology. Case presentation The 38-year-old woman underwent amniocentesis because of a high risk of trisomy 2 revealed by the genome-wide Non-Invasive Prenatal Test (NIPT). The invasive prenatal diagnosis revealed the mosaicism for a small supernumerary marker chromosome sSMC derived from chromosome 2. Interphase fluorescence in situ hybridization (FISH) on uncultured amniocytes revealed three signals of centromere 2 in 30% of the cells. GTG-banded metaphases revealed abnormal karyotype (47,XX,+mar[21]/46,XX[19]) and was confirmed by array comparative genomic hybridization (aCGH). Cytogenetic analyses (FISH, aCGH, karyotype) on fetal skin biopsies were performed and confirmed the genomic gain of the centromeric region of chromosome 2. In the placenta, three cell lines were detected: a normal cell line, a cell line with trisomy 2 and a third one with only the sSMC. Conclusion Whole-genome Non-Invasive Prenatal Testing allows not only the identification of common fetal trisomies but also diagnosis of rare chromosomal abnormalities. Especially in such cases, it is extremely important to perform not only NIPT verification on a sample of material other than trophoblast, but also to apply appropriate research methods. Such conduct allows detailed analysis of the detected aberration, thus appropriate clinical validity.


2021 ◽  
Author(s):  
Justyna Anna Domaradzka ◽  
Marta Deperas ◽  
Ewa Obersztyn ◽  
Anna Kucińska-Chahwan ◽  
Nathalie Brison ◽  
...  

Abstract Background: Non-invasive prenatal testing (NIPT) is a rapidly developing and widely used method in the prenatal screening. Recently, the widespread use of the NIPT caused a neglecting of the limitations of this technology. Case presentation: The 38-year-old woman underwent amniocentesis because of a high risk of trisomy 2 revealed by the genome-wide Non-Invasive Prenatal Test (NIPT). The invasive prenatal diagnosis revealed the mosaicism for a small supernumerary marker chromosome sSMC derived from chromosome 2. Interphase fluorescence in situ hybridization (FISH) on uncultured amniocytes revealed three signals of centromere 2 in 30% of the cells. GTG-banded metaphases revealed abnormal karyotype (47,XX,+mar[21]/46,XX[19]) and was confirmed by array comparative genomic hybridization (aCGH). Cytogenetic analyses (FISH, aCGH, karyotype) on fetal skin biopsies were performed and confirmed the genomic gain of the centromeric region of chromosome 2. In the placenta, three cell lines were detected: a normal cell line, a cell line with trisomy 2 and a third one with only the sSMC.Conclusion: Whole-genome Non-Invasive Prenatal Testing allows not only the identification of common fetal trisomies but also diagnosis of rare chromosomal abnormalities. Especially in such cases, it is extremely important to perform not only NIPT verification on a sample of material other than trophoblast, but also to apply appropriate research methods. Such conduct allows detailed analysis of the detected aberration, thus appropriate clinical validity.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1511
Author(s):  
Tatyana V. Karamysheva ◽  
Tatyana A. Gayner ◽  
Vladimir V. Muzyka ◽  
Konstantin E. Orishchenko ◽  
Nikolay B. Rubtsov

For medical genetic counseling, estimating the chance of a child being born with chromosome abnormality is crucially important. Cytogenetic diagnostics of parents with a balanced karyotype are a special case. Such chromosome rearrangements cannot be detected with comprehensive chromosome screening. In the current paper, we consider chromosome diagnostics in two cases of chromosome rearrangement in patients with balanced karyotype and provide the results of a detailed analysis of complex chromosomal rearrangement (CCR) involving three chromosomes and a small supernumerary marker chromosome (sSMC) in a patient with impaired reproductive function. The application of fluorescent in situ hybridization, microdissection, and multicolor banding allows for describing analyzed karyotypes in detail. In the case of a CCR, such as the one described here, the probability of gamete formation with a karyotype, showing a balance of chromosome regions, is extremely low. Recommendation for the family in genetic counseling should take into account the obtained result. In the case of an sSMC, it is critically important to identify the original chromosome from which the sSMC has been derived, even if the euchromatin material is absent. Finally, we present our view on the optimal strategy of identifying and describing sSMCs, namely the production of a microdissectional DNA probe from the sSMC combined with a consequent reverse painting.


Sign in / Sign up

Export Citation Format

Share Document