Dissolution Testing to Forecast the In Vivo Performance of MR Formulations

2016 ◽  
pp. 260-280
Keyword(s):  
Author(s):  
I Cámara-Martinez ◽  
J.A. Blechar ◽  
A. Ruiz-Picazo ◽  
A. Garcia-Arieta ◽  
C. Calandria ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Basanth Babu Eedara ◽  
Ian G. Tucker ◽  
Shyamal C. Das

AbstractIn vitro dissolution testing is a useful quality control tool to discriminate the formulations and to approximate the in vivo drug release profiles. A dissolution apparatus has been custom-made for dissolution testing of dry powder formulations in a small volume of stationary medium (25 μL spread over 4.91 cm2 area i.e. ~50 μm thick). To understand the system and predict the key parameters which influence the dissolution of respirable size particles, a simulation model was constructed using STELLA modeling software. Using this model, the permeation (dissolution followed by diffusion through the membrane) of two anti-tubercular drugs of differing solubilities, moxifloxacin (17.68 ± 0.85 mg mL−1) and ethionamide (0.46 ± 0.02 mg mL−1), from the respirable size particles and their diffusion from a solution were simulated. The simulated permeation profiles of moxifloxacin from solution and respirable size particles were similar, indicating fast dissolution of the particles. However, the simulated permeation profile of ethionamide from respirable size particles showed slower permeation compared to the solution indicating the slow dissolution of the respirable size particles of ethionamide. The sensitivity analysis suggested that increased mucus volume and membrane thickness decreased the permeation of drug. While this model was useful in predicting and distinguishing the dissolution behaviours of respirable size moxifloxacin and ethionamide, further improvement could be made using appropriate initial parameter values obtained by experiments.


Author(s):  
Shelly Gulati ◽  
Janpierre A. Bonoan ◽  
Kylee V. Schesser ◽  
Joshua F. Arucan ◽  
Xiaoling Li

This work describes a microfluidic drug dissolution testing method that was developed using a commercial quartz crystal microbalance (QCM) resonator combined with an axial microfluidic flow cell. Dissolution testing is used to obtain temporal dissolution profiles of drugs, which provide information on the bioavailability or the drug’s ability to be completely dissolved and then absorbed and utilized by the body. Feasibility of the QCM dissolution testing method was demonstrated using a sample drug system of thin films of benzoic acid dissolved in water, capturing the drug dissolution profile under different microflow conditions. Our analysis method uses the responses of resonance frequency and resistance of the quartz crystal during dissolution testing to determine the characteristic profiles of benzoic acid dissolved over a range of microflows (10–1000 μL/min). The initial dissolution rates were obtained from the characteristic profiles and found to increase with higher flow rates. This aligns with the expected trend of increased dissolution with higher hydrodynamic forces. The QCM-based microfluidic drug dissolution testing method has advantages over conventional dissolution test methods, including reduced sample sizes, rapid test durations, low resource requirements, and flow conditions that more closely model in vivo conditions.


2019 ◽  
Vol 15 (3) ◽  
pp. 296-317 ◽  
Author(s):  
Meera Shrivas ◽  
Dignesh Khunt ◽  
Meenakshee Shrivas ◽  
Manisha Choudhari ◽  
Rajeshwari Rathod ◽  
...  

2020 ◽  
Vol 21 (7) ◽  
Author(s):  
J. Martir ◽  
T. Flanagan ◽  
J. Mann ◽  
N. Fotaki

Abstract In vitro dissolution testing conditions that reflect and predict in vivo drug product performance are advantageous, especially for the development of paediatric medicines, as clinical testing in this population is hindered by ethical and technical considerations. The aim of this study was to develop an in vivo predictive dissolution test in order to investigate the impact of medicine co-administration with soft food and drinks on the dissolution performance of a poorly soluble compound. Relevant in vitro dissolution conditions simulating the in vivo gastrointestinal environment of infants were used to establish in vitro-in vivo relationships with corresponding in vivo data. Dissolution studies of montelukast formulations were conducted with mini-paddle apparatus on a two-stage approach: infant fasted-state simulated gastric fluid (Pi-FaSSGF; for 1 h) followed by either infant fasted-state or infant fed-state simulated intestinal fluid (FaSSIF-V2 or Pi-FeSSIF, respectively; for 3 h). The dosing scenarios tested reflected in vivo paediatric administration practices: (i.) direct administration of formulation; (ii.) formulation co-administered with vehicles (formula, milk or applesauce). Drug dissolution was significantly affected by co-administration of the formulation with vehicles compared with after direct administration of the formulation. Montelukast dissolution from the granules was significantly higher under fed-state simulated intestinal conditions in comparison with the fasted state and was predictive of the in vivo performance when the granules are co-administered with milk. This study supports the potential utility of the in vitro biorelevant dissolution approach proposed to predict in vivo formulation performance after co-administration with vehicles, in the paediatric population.


Sign in / Sign up

Export Citation Format

Share Document