scholarly journals Parametrized Kuramoto Model for Coupled Oscillators with Fractional Frequencies Ratios

Author(s):  
M.M. Gourary ◽  
S.G. Rusakov ◽  
◽  
2013 ◽  
Vol 5 (2) ◽  
pp. 55-77 ◽  
Author(s):  
Anthony H. Dekker

In this paper, the author explores epistemological aspects of simulation with a particular focus on using simulations to provide recommendations to managers and other decision-makers. The author presents formal definitions of knowledge (as justified true belief) and of simulation. The author shows that a simple model, the Kuramoto model of coupled-oscillators, satisfies the simulation definition (and therefore generates knowledge) through a justified mapping from the real world. The author argues that, for more complex models, such a justified mapping requires three techniques: using an appropriate and justified theoretical construct; using appropriate and justified values for model parameters; and testing or other verification processes to ensure that the mapping is correctly defined. The author illustrates these three techniques with experiments and models from the literature, including the Long House Valley model of Axtell et al., the SAFTE model of sleep, and the Segregation model of Wilensky.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
John Vandermeer ◽  
Zachary Hajian-Forooshani ◽  
Nicholas Medina ◽  
Ivette Perfecto

Ecological systems, as is often noted, are complex. Equally notable is the generalization that complex systems tend to be oscillatory, whether Huygens' simple patterns of pendulum entrainment or the twisted chaotic orbits of Lorenz’ convection rolls. The analytics of oscillators may thus provide insight into the structure of ecological systems. One of the most popular analytical tools for such study is the Kuramoto model of coupled oscillators. We apply this model as a stylized vision of the dynamics of a well-studied system of pests and their enemies, to ask whether its actual natural history is reflected in the dynamics of the qualitatively instantiated Kuramoto model. Emerging from the model is a series of synchrony groups generally corresponding to subnetworks of the natural system, with an overlying chimeric structure, depending on the strength of the inter-oscillator coupling. We conclude that the Kuramoto model presents a novel window through which interesting questions about the structure of ecological systems may emerge.


2020 ◽  
Author(s):  
Jeremi Ochab

A modified Kuramoto model of synchronization in a finite discrete system of locally coupled oscillators is studied. The model consists of N oscillators with random natural frequencies arranged on a ring. It is shown analytically and numerically that finite-size systems may have many different synchronized stable solutions which are characterised by different values of the winding number. The lower bound for the critical coupling $k_c$ is given, as well as an algorithm for its exact calculation. It is shown that in general phase-locking does not lead to phase coherence in 1D.


2019 ◽  
Vol 100 (3) ◽  
Author(s):  
Franziska Peter ◽  
Chen Chris Gong ◽  
Arkady Pikovsky

Sign in / Sign up

Export Citation Format

Share Document