scholarly journals The modulatory effect of oscillatory reinstatement during slow-wave sleep on declarative memory consolidation

Author(s):  
Becky Crowley ◽  
Amir-Homayoun Javadi

Consistent with the context-dependent memory literature, previous research suggests that when the same frequency of neural oscillations is reinstated between memory encoding and retrieval, engram reactivation is facilitated, and thus declarative memory recall is enhanced. Importantly, engram reactivation is also fundamental for the redistribution process that underlies sleep-dependent memory consolidation. Therefore, the current study investigated whether reinstating frequency-specific oscillatory activity between encoding and sleep would facilitate the engram reactivation implicated in sleep-dependent memory consolidation, and thus enhance post-sleep declarative memory performance. Transcranial alternating current stimulation (tACS) was administered to the left dorsolateral prefrontal cortex (DLPFC) of human participants during a declarative memory task. Participants received 60 Hz of stimulation during encoding, and 60 Hz, 90 Hz, or sham stimulation during post-learning slow-wave sleep (SWS) or rapid eye-movement (REM) sleep. In immediate and delayed free recall sessions, declarative memory performance was significantly enhanced if participants had received the same frequency of stimulation during encoding and SWS compared to any other stimulation condition. This finding supports a novel theoretical proposal, which assumes that an intrinsic neurobiological mechanism for coordinating frequency-specific oscillatory activity, during SWS, underlies sleep-dependent declarative memory consolidation.

2019 ◽  
Author(s):  
Matthias Grieder ◽  
Yosuke Morishima ◽  
Stephanie Winkelbeiner ◽  
Sarah M Mueller ◽  
Kristoffer Feher ◽  
...  

Background: Sleep is crucial for sound memory functioning in humans. In particular, the slow waves that occur predominantly during slow wave sleep (SWS) are associated with hippocampus-dependent declarative memory consolidation. Making use of this association, boosting SWS to improve memory performance would be appealing for both healthy and memory-impaired populations. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation that modulates the brain’s excitability and has shown promising results in improving memory performance. However, owing to differing stimulation protocols and contradictory findings, there is insufficient evidence for the efficacy of tDCS-modulated hippocampal excitability on SWS and sleep-dependent memory consolidation.Hypotheses: We aimed to enhance sleep-dependent memory consolidation and augment slow wave amplitudes.Methods: We applied bi-temporal anodal tDCS to the left and right lateral temporal lobes of 31 healthy participants in a double-blind, sham-controlled, randomized crossover study. State-dependent tDCS was administered during slow wave sleep only. A pair-associate episodic memory task was used to assess sleep-dependent memory consolidation with face-occupation stimuli with baseline retrieval before sleep and delayed retrieval after sleep.Results: Sleep-dependent memory consolidation was increased by tDCS only in participants who showed above-average performance (i.e. high performers) in baseline memory retrieval. Moreover, tDCS increased the slow wave amplitudes compared to sham.Conclusions: When targeting a specialized brain mechanism such as memory consolidation with tDCS during slow wave sleep, only those who were high performers at baseline achieved a memory boost.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A34-A34
Author(s):  
E M Wernette ◽  
K M Fenn

Abstract Introduction Slow wave sleep (SWS) strengthens declarative memory for information studied for a later test. However, research on the effect of sleep on information that is not intentionally remembered is scare. Previous research from our lab suggests sleep consolidates some, but not all, information that has been encoded incidentally, meaning that it has been acted on but not intentionally remembered. It remains unclear what determines which information benefits from sleep-dependent consolidation processes and what aspects of sleep are related to these mnemonic benefits. In two experiments, we test the hypothesis that sleep consolidates strong but not weak memory traces following incidental encoding, and assess the relationship between memory performance and objective sleep characteristics. Methods In Experiment 1, participants rated words one (weak traces) or three times (strong traces) in a deep or shallow incidental encoding task. Participants either rated words on a scale from ‘concrete’ to ‘abstract’ (deep) or counted the vowels in the words (shallow). Following a 12-hour period containing sleep or wakefulness, participants took a surprise memory test. In Experiment 2, participants rated words one or three times in the deep encoding task, received an 8-hour sleep opportunity with polysomnography, and took the surprise memory test. Results In Experiment 1, participants remembered words better after sleep than wake regardless of whether words were encoded one or three times, but only after deep encoding. Sleep did not consolidate information following shallow encoding. Experiment 2 is ongoing, but we predict that the amount of SWS will correlate positively with memory. Conclusion Results thus far suggest sleep may have consolidated information based on the strength of memory traces. Because deep encoding results in stronger memory traces than shallow encoding, this work is broadly consistent with theories of memory consolidation that predict sleep is more beneficial for strong memory traces than weak, such as the synaptic downscaling hypothesis. Support N/A


2021 ◽  
Vol 11 (4) ◽  
pp. 410
Author(s):  
Simon Ruch ◽  
Kristoffer Fehér ◽  
Stephanie Homan ◽  
Yosuke Morishima ◽  
Sarah Maria Mueller ◽  
...  

Slow-wave sleep (SWS) has been shown to promote long-term consolidation of episodic memories in hippocampo–neocortical networks. Previous research has aimed to modulate cortical sleep slow-waves and spindles to facilitate episodic memory consolidation. Here, we instead aimed to modulate hippocampal activity during slow-wave sleep using transcranial direct current stimulation in 18 healthy humans. A pair-associate episodic memory task was used to evaluate sleep-dependent memory consolidation with face–occupation stimuli. Pre- and post-nap retrieval was assessed as a measure of memory performance. Anodal stimulation with 2 mA was applied bilaterally over the lateral temporal cortex, motivated by its particularly extensive connections to the hippocampus. The participants slept in a magnetic resonance (MR)-simulator during the recordings to test the feasibility for a future MR-study. We used a sham-controlled, double-blind, counterbalanced randomized, within-subject crossover design. We show that stimulation vs. sham significantly increased slow-wave density and the temporal coupling of fast spindles and slow-waves. While retention of episodic memories across sleep was not affected across the entire sample of participants, it was impaired in participants with below-average pre-sleep memory performance. Hence, bi-temporal anodal direct current stimulation applied during sleep enhanced sleep parameters that are typically involved in memory consolidation, but it failed to improve memory consolidation and even tended to impair consolidation in poor learners. These findings suggest that artificially enhancing memory-related sleep parameters to improve memory consolidation can actually backfire in those participants who are in most need of memory improvement.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A16-A16
Author(s):  
Megan Collins ◽  
Erin Wamsley ◽  
Hailey Napier ◽  
Madeline Ray

Abstract Introduction Slow wave sleep (SWS) is thought to especially benefit declarative memory (i.e., memory for facts and events). As such, recent studies have used various methods to experimentally increase the amount of slow wave sleep that participants obtain, with the goal of assessing how SWS affects declarative memory consolidation. Studies dating back decades have reported that exercising before sleep may increase time spent in SWS. Thus, the aim of the current project was to determine whether exercising after learning verbal information enhances slow wave sleep during a subsequent nap and/or enhances memory for verbal information. Methods Participants who exercised regularly were recruited to attend two 2.5hr laboratory sessions. During each session, they trained on a paired associates learning task and then completed either a 20min cardiovascular exercise routine or a 20min stretching routine. Following a 1hr nap opportunity, participants were tested on their memory. PSG was recorded during the nap, and scored following AASM criteria. Participants were excluded from analysis if they failed to sleep for at least 10 min. Following exclusions, n=30 participants were included in analysis. Results Contrary to our hypotheses, there was no significant difference between the exercise and stretching conditions for minutes spent in slow wave sleep (p=.16), % time spent in slow wave sleep (p=.22), or raw improvement in paired associated performance (p=.23). The amount of SWS obtained during the nap did not correlate with performance in either condition (SWS min vs. memory in exercise condition: r28=.10, p=.60; sleep condition: r28=-.06, p=.74). Exercise did not affect time spent in any other sleep stage, nor did it affect total sleep time. Conclusion Contrary to our hypotheses and the results of prior research, we were unable to detect a significant effect of exercise on slow wave sleep. Also contrary to our hypotheses, exercise did not affect memory retention across the nap interval. These null results could indicate that there is no effect of exercise on nap sleep and/or associated memory retention. However, it could also be that we lacked sufficient power to detect effects that were smaller than expected. Support (if any):


2007 ◽  
Vol 14 (5) ◽  
pp. 336-341 ◽  
Author(s):  
J. Backhaus ◽  
J. Born ◽  
R. Hoeckesfeld ◽  
S. Fokuhl ◽  
F. Hohagen ◽  
...  

2017 ◽  
Author(s):  
Mohsen Naji ◽  
Giri P. Krishnan ◽  
Elizabeth A McDevitt ◽  
Maxim Bazhenov ◽  
Sara C. Mednick

AbstractWhile anatomical pathways between forebrain cognitive and brainstem autonomic nervous centers are well defined, autonomic–central interactions during sleep and their contribution to waking performance are not understood. Here, we analyzed simultaneous central activity via electroencephalography (EEG) and autonomic heart beat-to-beat intervals (RR intervals) from electrocardiography (ECG) during wake and daytime sleep. We identified bursts of ECG activity that lasted 4-5 seconds and predominated in non-rapid-eye-movement sleep (NREM). Using event-based analysis of NREM sleep, we found an increase in delta (0.5-4Hz) and sigma (12-15Hz) power and an elevated density of slow oscillations (0.5-1Hz) about 5 secs prior to peak of the heart rate burst, as well as a surge in vagal activity, assessed by high-frequency (HF) component of RR intervals. Using regression framework, we show that these Autonomic/Central Events (ACE) positively predicted post-nap improvement in a declarative memory task after controlling for the effects of spindles and slow oscillations from sleep periods without ACE. No such relation was found between memory performance and a control nap. Additionally, NREM ACE negatively correlated with REM sleep and learning in a non-declarative memory task. These results provide the first evidence that coordinated autonomic and central events play a significant role in declarative memory consolidation.


Sign in / Sign up

Export Citation Format

Share Document