scholarly journals PR42_Components for an Integrated Recirculating Frequency Shifter Device (NNX16AD14G-Y3)

2022 ◽  
Author(s):  
Shayan Mookherjee

We report and discuss measurements of silicon photonics components which comprise a recirculating variable-count frequency shifter (RVCFS) device. Summary of a Project Outcomes report of research funded by NASA.

Author(s):  
Jerome Bourderionnet ◽  
Arnaud Brignon ◽  
Carmello Scarcella ◽  
Alan Naughton ◽  
Peter O'Brien ◽  
...  

2022 ◽  
Author(s):  
Shayan Mookherjee

We study how the performance and utility of high-bandwidth, energy-efficient communication networks can be improved by enabling programmability and user-defined tunability in the optical front-ends using silicon photonics. Summary of a Project Outcomes report of research funded by the U.S. National Science Foundation under Project Number 1525090 (Year 1).


2022 ◽  
Author(s):  
Shayan Mookherjee

We design of compact head-end components at the transceiver level using silicon photonics to implement disaggregation for improving optical communications. We study how to use optical side channels to pass control messages without increasing the number of fibers or input/output ports. Summary of a Project Outcomes report of research funded by the U.S. National Science Foundation under Project Number 1525090 (Year 3).


2022 ◽  
Author(s):  
Shayan Mookherjee

We study the design of compact head-end components at the transceiver level using silicon photonics to implement disaggregation for improving optical communications, and demonstrate novel functionality at the link level. Summary of a Project Outcomes report of research funded by the U.S. National Science Foundation under Project Number 1525090 (Year 2).


2022 ◽  
Author(s):  
Shayan Mookherjee

Our research focused on developing integrated pair sources using silicon photonics technology. This device uses a microring resonator for pair generation. Activities performed this year include measurements of silicon photonic entangled-pair and heralded single photon generation using an integrated photonic microchip that includes the pair generation resonator as well as tunable filters. Summary of a Project Outcomes report of research funded by the U.S. National Science Foundation under Project Number 1640968 (Year 3).


2022 ◽  
Author(s):  
Shayan Mookherjee

We study a transceiver architecture, which is based on an innovative design which generates a flexible number of communication streams from a single laser. This approach can achieve reductions in size, weight, and energy consumption, and improvements on link performance and bandwidth compared to both RF communications and existing optical technologies Summary of a Project Outcomes report of research funded by NASA.


2022 ◽  
Author(s):  
Shayan Mookherjee

We have studied how short-distance, wavelength division multiplexed optical communication networks can be improved by enabling programmability and user-defined tunability in the optical front-ends using silicon photonics. Summary of a Project Outcomes report of research funded by the U.S. National Science Foundation under Project Number 1525090 (Year 4).


2007 ◽  
Vol 66 (4) ◽  
pp. 373-382
Author(s):  
V. K. Kiselyov ◽  
V. I. Bezborodov ◽  
P. K. Nesterov ◽  
M. S. Yanovsky

Author(s):  
Pradip Sairam Pichumani ◽  
Fauzia Khatkhatay

Abstract Silicon photonics is a disruptive technology that aims for monolithic integration of photonic devices onto the complementary metal-oxide-semiconductor (CMOS) technology platform to enable low-cost high-volume manufacturing. Since the technology is still in the research and development phase, failure analysis plays an important role in determining the root cause of failures seen in test vehicle silicon photonics modules. The fragile nature of the test vehicle modules warrants the development of new sample preparation methods to facilitate subsequent non-destructive and destructive analysis methods. This work provides an example of a single step sample preparation technique that will reduce the turnaround time while simultaneously increasing the scope of analysis techniques.


Sign in / Sign up

Export Citation Format

Share Document