crystalline films
Recently Published Documents


TOTAL DOCUMENTS

657
(FIVE YEARS 68)

H-INDEX

45
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Sachin Sharma ◽  
Laurent Souqui ◽  
Henrik Pedersen ◽  
Hans Högberg

Thin films of boron nitride in its sp2-hybridized form (sp2-BN) have potential use in UV-devices and dielectrics. Here, we explore chemical vapor deposition (CVD) of sp2-BN on various cuts of sapphire; Al2O3(112̅0), Al2O3(11̅02), Al2O3(11̅00) and Al2O3 (0001) using two CVD processes with different boron precursors; triethylborane (TEB) and trimethylborane (TMB). Fourier transform infrared spectroscopy (FTIR) showed that sp2-BN grows on all the sapphire substrates, using X-ray diffraction (XRD), 2θ/ω diffractograms showed that only Al2O3(112̅0) and Al2O3(0001) renders crystalline films and using phi(ɸ)-scans the growth of rhombohedral polytype (r-BN) films on these substrates is confirmed. These films are found to be epitaxially grown on an AlN interlayer with a higher crystalline quality for the films grown on the Al2O3(112̅0) substrate which is determined using omega(ω)-scans. Our study suggests that Al2O3(112̅0) is the most favorable sapphire substrate to realize the envisioned applications of r-BN films.


Author(s):  
Nooshin Kashi ◽  
Mahdi Momeni ◽  
Habib Hamidinezhad

In this work, a pulsed laser deposition (PLD) technique with an Nd:YAG laser source was used to produce pure Hydroxyapatite (HA) and Cu-substituted HA (Cu-HA) coatings on stainless steel substrates in vacuum at room temperature. It is observed that the combined effects of percentages of Cu dopants and laser energy as well as annealing temperature significantly modify the crystallinity of the films. The morphology and structural properties of the deposited HA films were analyzed by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and Raman spectroscopy. FESEM images displayed various shapes of nanoparticles with high-surface density throughout the area of the substrate and with typical sizes around 26–208 nm. XRD analysis confirmed that post-deposition annealing is essential to achieve the desired crystallinity and uniformity of coatings. The Raman spectrum of HA has peaks at 958.22, 437.48, and 587.05 cm[Formula: see text] attributed to the [Formula: see text] PO[Formula: see text], [Formula: see text] PO[Formula: see text], and [Formula: see text] PO[Formula: see text], respectively. The synthesized HA and Cu-HA crystalline films are nanostructures with dense and compact microstructures. Finally, irregular surface and crystalline structure of fabricated films lead to the extension of the surface and enhance the cell’s proliferation in medical uses and biomedical applications.


2021 ◽  
Vol 66 (6) ◽  
pp. 1125-1132
Author(s):  
V. A. Postnikov ◽  
G. A. Yurasik ◽  
A. A. Kulishov ◽  
M. S. Lyasnikova ◽  
O. V. Borshchev ◽  
...  

2021 ◽  
Vol 571 ◽  
pp. 121043
Author(s):  
A.A.A. Darwish ◽  
Taymour A. Hamdalla ◽  
S.A. Al-Ghamdi ◽  
Ahmed Obaid M. Alzahrani ◽  
Syed Khasim ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 846
Author(s):  
Vitalii Gorbenko ◽  
Sandra Witkiewicz-Łukaszek ◽  
Tetiana Zorenko ◽  
Yuri Syrotych ◽  
Jiri A. Mares ◽  
...  

The scintillation properties of novel type of composite scintillator based on Lu3Al5O12:Pr (LuAG:Pr) single crystalline film (SCF) and LuAG:Sc substrate grown by the liquid-phase epitaxy method are considered in this work. The registration of α-particles and γ-quanta in such types of composites occurs by means of separation of the scintillation decay kinetics of SCF and crystal parts, respectively. Namely, under excitation by α-particles of 241Am (5.5 MeV) source and γ-quanta of 137Cs (662 keV) source, the large differences in the respective scintillation decay kinetics and decay time values tα and tγ are observed for the LuAG:Pr SCF/LuAG:Sc SC composite scintillator with various film thicknesses. Furthermore, the best tγ/tα ratio above 4.5 is achieved for such types of epitaxial structure with SCF and substrate thicknesses of 17 μm and about 0.5 mm, respectively. The development types of composite scintillators can be successfully applied for simultaneous registration of α-particles and γ-quanta in the mixed radiation fluxes.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 788
Author(s):  
Vitalii Gorbenko ◽  
Tetiana Zorenko ◽  
Sandra Witkiewicz-Łukaszek ◽  
Anna Shakhno ◽  
Andres Osvet ◽  
...  

This work is devoted to the crystallization and investigation of the optical properties of single crystalline films (SCFs) of Ce3+-doped Y3−xCaxAl5−ySiyO12 garnet, where the content of Ca2+ and Si4+ cations varied in the x = 0.13–0.52 and y = 0.065–0.5 ranges, respectively. The SCF samples were grown using the liquid phase epitaxy technique onto Y3Al5O12 substrates from the melt solution with equimolar Ca and Si content using PbO-B2O3 flux. However, the Ca and Si concentration in Y3−xCax Al5−ySiyO12:Ce SCFs is not equal: the Ca2+ content was systematically larger than that of Si4+, and the Ca2+ excess is compensated for by the Ce4+ ion formation. The absorption, scintillation, and luminescent properties of Y3−xCaxAl5−ySiyO12:Ce SCFs with different Ca/Si concentrations were investigated and compared with the sample of YAG:Ce SCF. Due to the creation of Ce4+ ions, the as-grown Y3−xCaxAl5−ySiyO12:Ce SCFs show relatively low light yield (LY) under α–particle excitation but a fast scintillation response with a decay time in the ns range. After SCF annealing in the reducing (N2 + H2) atmosphere at T > 1000 °C, the recharging of Ce4+→Ce3+ ions occurs. Furthermore, the samples annealed at 1300 °C SCF possess an LY of about 40% in comparison with the reference YAG:Ce SCF and scintillation decay kinetics much closer to that of the SCF counterpart. Due to Ca2+ and Si4+ alloying, the Ce3+ emission spectra in Y3−xCaxAl5−ySiyO12 SCFs are extended to the red range in comparison with the spectra of YAG:Ce SCF. Such an extension is caused by the Ce3+ multicenter formation at the substitutions of both Y3+ and Ca2+ dodecahedral positions in the hosts of these mixed garnets.


2021 ◽  
pp. 130395
Author(s):  
Yong Le ◽  
Caina Luan ◽  
Di Wang ◽  
Biao Zhang ◽  
Hongdi Xiao ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document