The coupled gravity of straight space-time and uncertainty principle

2021 ◽  
Author(s):  
Wen-Xiang Chen

This article points out that when the boundary condition $\frac{T}{T_{c}}=z$ (when z is a complex number) is preset, bosons can produce Bose condensation without an energy layer. Under Bose condensation, incident waves may condense in various black holes in the theory of loop quantum gravity. This paper shows that under the gravitational subsystem composed of two bosons, the extreme value of the measurement uncertainty principle can be smaller because the probability flow density is related to the time parameter. This is a model to verify the existence of gravitons.

2021 ◽  
Author(s):  
Wen-Xiang Chen

This article points out that when the boundary condition $\frac{T}{T_{c}}=z$ (when z is a complex number) is preset, bosons can produce Bose condensation without an energy layer. Under Bose condensation, incident waves may condense in various black holes in the theory of loop quantum gravity. At that time, potential barriers will be generated near the horizon of various black holes, and we believe that these black holes will also produce super-radiation phenomena (this article uses the natural unit system). We assume that the simple loop quantum gravity theoretical model that can produce superradiation phenomena that does not exist in the traditional theory provides experimental evidence for loop quantum gravity.


2021 ◽  
Author(s):  
Wen-Xiang Chen

In this paper, we show that bosons can produce bochromatic condensation without an energy layer when the boundary condition $\frac{T}{T_{c}}=z$(when z is complex) is preset. $r_{R}=zr_{A}\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}$(when z is A complex number). A new form of gravitational potential is obtained by combining the theory of gravitational entropy with loop quantum gravity.


2015 ◽  
Vol 91 (6) ◽  
Author(s):  
Andreas G. A. Pithis ◽  
Hans-Christian Ruiz Euler

2018 ◽  
Vol 33 (05) ◽  
pp. 1850031 ◽  
Author(s):  
Aloke Kumar Sinha

We have derived the criteria for thermal stability of charged rotating black holes, for horizon areas that are large relative to the Planck area (in these dimensions). In this paper, we generalized it for black holes with arbitrary hairs. The derivation uses results of loop quantum gravity and equilibrium statistical mechanics of the grand canonical ensemble and there is no explicit use of classical spacetime geometry at all in this analysis. The assumption is that the mass of the black hole is a function of its horizon area and all the hairs. Our stability criteria are then tested in detail against some specific black holes, whose metrics provide us with explicit relations for the dependence of the mass on the area and other hairs of the black holes. This enables us to predict which of these black holes are expected to be thermally unstable under Hawking radiation.


2019 ◽  
Vol 789 ◽  
pp. 88-92 ◽  
Author(s):  
J.R. Mureika

2004 ◽  
Vol 19 (23) ◽  
pp. 1767-1779 ◽  
Author(s):  
LI XIANG ◽  
YOU-GEN SHEN

Some consequences of the generalized uncertainty principle (GUP) are investigated, including the deformations of the Wein's law and the state equations of black body radiation. The effects of the GUP on the thermodynamics of black holes are investigated by a heuristic method. A bound on the luminosity of the black hole radiation is obtained. The logarithmic corrections to the Bekenstein–Hawking entropy are obtained in three cases. The potential relation between the GUP and the holographic principle is also briefly discussed.


2014 ◽  
Vol 31 (9) ◽  
pp. 095009 ◽  
Author(s):  
Rodolfo Gambini ◽  
Javier Olmedo ◽  
Jorge Pullin

Sign in / Sign up

Export Citation Format

Share Document