scholarly journals Poster on Detecting and Characterizing Dead Wood Using Terrestrial Laser Scanning

2020 ◽  
Author(s):  
Tuomas Yrttimaa ◽  
Ninni Saarinen ◽  
Ville Luoma ◽  
Topi Tanhuanpää ◽  
Ville Kankare ◽  
...  

Dead wood is a key forest structural component for maintaining biodiversity and storing carbon. Despite its important role in a forest ecosystem, quantifying dead wood alongside standing trees has often neglected when investigating the feasibility of terrestrial laser scanning (TLS) in forest inventories. The objective of this study was therefore to develop an automatic method for detecting and characterizing downed dead wood.

2020 ◽  
Author(s):  
Tuomas Yrttimaa ◽  
Ninni Saarinen ◽  
Ville Luoma ◽  
Topi Tanhuanpää ◽  
Ville Kankare ◽  
...  

The feasibility of terrestrial laser scanning (TLS) in characterizing standing trees has been frequently investigated, while less effort has been put in quantifying downed dead wood using TLS. To advance dead wood characterization using TLS, we collected TLS point clouds and downed dead wood information from 20 sample plots (32 m x 32 m in size) located in southern Finland. This data set can be used in developing new algorithms for downed dead wood detection and characterization as well as for understanding spatial patterns of downed dead wood in boreal forests.


2019 ◽  
Vol 151 ◽  
pp. 76-90 ◽  
Author(s):  
Tuomas Yrttimaa ◽  
Ninni Saarinen ◽  
Ville Luoma ◽  
Topi Tanhuanpää ◽  
Ville Kankare ◽  
...  

2020 ◽  
Author(s):  
Tuomas Yrttimaa ◽  
Ninni Saarinen ◽  
Ville Luoma ◽  
Topi Tanhuanpää ◽  
Ville Kankare ◽  
...  

Dead wood is a key forest structural component for maintaining biodiversity and storing carbon. Despite its important role in a forest ecosystem, quantifying dead wood alongside standing trees has often neglected when investigating the feasibility of terrestrial laser scanning (TLS) in forest inventories. The objective of this study was therefore to develop an automatic method for detecting and characterizing downed dead wood with a diameter exceeding 5 cm using multi-scan TLS data. The developed four-stage algorithm included 1) RANSAC-cylinder filtering, 2) point cloud rasterization, 3) raster image segmentation, and 4) dead wood trunk positioning. For each detected trunk, geometry-related quality attributes such as dimensions and volume were automatically determined from the point cloud. For method development and validation, reference data were collected from 20 sample plots representing diverse southern boreal forest conditions. Using the developed method, the downed dead wood trunks were detected with an overall completeness of 33% and correctness of 76%. Up to 92% of the downed dead wood volume were detected at plot level with mean value of 68%. We were able to improve the detection accuracy of individual trunks with visual interpretation of the point cloud, in which case the overall completeness was increased to 72% with mean proportion of detected dead wood volume of 83%. Downed dead wood volume was automatically estimated with an RMSE of 15.0 m3/ha (59.3%), which was reduced to 6,4 m3/ha (25.3%) as visual interpretation was utilized to aid the trunk detection. The reliability of TLS-based dead wood mapping was found to increase as the dimensions of dead wood trunks increased. Dense vegetation caused occlusion and reduced the trunk detection accuracy. Therefore, when collecting the data, attention must be paid to the point cloud quality. Nevertheless, the results of this study strengthen the feasibility of TLS-based approaches in mapping biodiversity indicators by demonstrating an improved performance in quantifying ecologically most valuable downed dead wood in diverse forest conditions.


Author(s):  
Xinlian Liang ◽  
Ville Kankare ◽  
Juha Hyyppä ◽  
Yunsheng Wang ◽  
Antero Kukko ◽  
...  

Forests ◽  
2017 ◽  
Vol 8 (6) ◽  
pp. 184 ◽  
Author(s):  
Meinrad Abegg ◽  
Daniel Kükenbrink ◽  
Jürgen Zell ◽  
Michael Schaepman ◽  
Felix Morsdorf

2021 ◽  
Vol 13 (18) ◽  
pp. 3610
Author(s):  
Dimitrios Panagiotidis ◽  
Azadeh Abdollahnejad

Simple and accurate determination of merchantable tree height is needed for accurate estimations of merchantable volume. Conventional field methods of forest inventory can lead to biased estimates of tree height and diameter, especially in complex forest structures. Terrestrial laser scanner (TLS) data can be used to determine merchantable height and diameter at different heights with high accuracy and detail. This study focuses on the use of the random sampling consensus method (RANSAC) for generating the length and diameter of logs to estimate merchantable volume at the tree level using Huber’s formula. For this study, we used two plots; plot A contained deciduous trees and plot B consisted of conifers. Our results demonstrated that the TLS-based outputs for stem modelling using the RANSAC method performed very well with low bias (0.02 for deciduous and 0.01 for conifers) and a high degree of accuracy (97.73% for deciduous and 96.14% for conifers). We also found a high correlation between the proposed method and log length (−0.814 for plot A and −0.698 for plot B), which is an important finding because this information can be used to determine the optimum log properties required for analyzing stem curvature changes at different heights. Furthermore, the results of this study provide insight into the applicability and ergonomics during data collection from forest inventories solely from terrestrial laser scanning, thus reducing the need for field reference data.


2019 ◽  
Vol 11 (2) ◽  
pp. 211 ◽  
Author(s):  
Wuming Zhang ◽  
Peng Wan ◽  
Tiejun Wang ◽  
Shangshu Cai ◽  
Yiming Chen ◽  
...  

Tree stem detection is a key step toward retrieving detailed stem attributes from terrestrial laser scanning (TLS) data. Various point-based methods have been proposed for the stem point extraction at both individual tree and plot levels. The main limitation of the point-based methods is their high computing demand when dealing with plot-level TLS data. Although segment-based methods can reduce the computational burden and uncertainties of point cloud classification, its application is largely limited to urban scenes due to the complexity of the algorithm, as well as the conditions of natural forests. Here we propose a novel and simple segment-based method for efficient stem detection at the plot level, which is based on the curvature feature of the points and connected component segmentation. We tested our method using a public TLS dataset with six forest plots that were collected for the international TLS benchmarking project in Evo, Finland. Results showed that the mean accuracies of the stem point extraction were comparable to the state-of-art methods (>95%). The accuracies of the stem mappings were also comparable to the methods tested in the international TLS benchmarking project. Additionally, our method was applicable to a wide range of stem forms. In short, the proposed method is accurate and simple; it is a sensible solution for the stem detection of standing trees using TLS data.


Author(s):  
Martin Mokroš ◽  
Tomáš Mikita ◽  
Arunima Singh ◽  
Julián Tomaštík ◽  
Juliána Chudá ◽  
...  

Author(s):  
M. T. Vaaja ◽  
J.-P. Virtanen ◽  
M. Kurkela ◽  
V. Lehtola ◽  
J. Hyyppä ◽  
...  

The 3D measurement technique of terrestrial laser scanning (TLS) in forest inventories has shown great potential for improving the accuracy and efficiency of both individual tree and plot level data collection. However, the effect of wind has been poorly estimated in the error analysis of TLS tree measurements although it causes varying deformations to the trees. In this paper, we evaluated the effect of wind on tree stem parameter estimation at different heights using TLS. The data consists of one measured Scots pine captured from three different scanning directions with two different scanning resolutions, 6.3 mm and 3.1 mm at 10 m. The measurements were conducted under two different wind speeds, approximately 3 m/s and 9 m/s, as recorded by a nearby weather station of the Finnish Meteorological Institute. Our results show that the wind may cause both the underestimation and overestimation of tree diameter when using TLS. The duration of the scanning is found to have an impact for the measured shape of the tree stem under 9 m/s wind conditions. The results also indicate that a 9 m/s wind does not have a significant effect on the stem parameters of the lower part of a tree (<28% of the tree height). However, as the results imply, the wind conditions should be taken into account more comprehensively in analysis of TLS tree measurements, especially if multiple scans from different positions are registered together. In addition, TLS could potentially be applied to indirectly measure wind speed by observing the tree stem movement.


Sign in / Sign up

Export Citation Format

Share Document