scholarly journals A Novel Approach for the Detection of Standing Tree Stems from Plot-Level Terrestrial Laser Scanning Data

2019 ◽  
Vol 11 (2) ◽  
pp. 211 ◽  
Author(s):  
Wuming Zhang ◽  
Peng Wan ◽  
Tiejun Wang ◽  
Shangshu Cai ◽  
Yiming Chen ◽  
...  

Tree stem detection is a key step toward retrieving detailed stem attributes from terrestrial laser scanning (TLS) data. Various point-based methods have been proposed for the stem point extraction at both individual tree and plot levels. The main limitation of the point-based methods is their high computing demand when dealing with plot-level TLS data. Although segment-based methods can reduce the computational burden and uncertainties of point cloud classification, its application is largely limited to urban scenes due to the complexity of the algorithm, as well as the conditions of natural forests. Here we propose a novel and simple segment-based method for efficient stem detection at the plot level, which is based on the curvature feature of the points and connected component segmentation. We tested our method using a public TLS dataset with six forest plots that were collected for the international TLS benchmarking project in Evo, Finland. Results showed that the mean accuracies of the stem point extraction were comparable to the state-of-art methods (>95%). The accuracies of the stem mappings were also comparable to the methods tested in the international TLS benchmarking project. Additionally, our method was applicable to a wide range of stem forms. In short, the proposed method is accurate and simple; it is a sensible solution for the stem detection of standing trees using TLS data.

2020 ◽  
Vol 12 (3) ◽  
pp. 352 ◽  
Author(s):  
WenFang Ye ◽  
Chuang Qian ◽  
Jian Tang ◽  
Hui Liu ◽  
XiaoYun Fan ◽  
...  

The detailed structure information under the forest canopy is important for forestry surveying. As a high-precision environmental sensing and measurement method, terrestrial laser scanning (TLS) is widely used in high-precision forestry surveying. In TLS-based forestry surveys, stem-mapping, which is focused on detecting and extracting trunks, is one of the core data processing tasks and the basis for the subsequent calculation of tree attributes; one of the most basic attributes is the diameter at breast height (DBH). This article explores and improves the methods for stem mapping and DBH estimation from TLS data. Firstly, an improved 3D stem mapping algorithm considering the growth direction in random sample consistency (RANSAC) cylinder fitting is proposed to extract and fit the individual tree point cloud section. It constructs the hierarchical optimum cylinder of the trunk and introduces the growth direction into the establishment of the backbone buffer in the next layer. Experimental results show that it can effectively remove most of the branches and reduce the interference of the branches to the discrimination of trunks and improve the integrity of stem extraction by about 36%. Secondly, a robust least squares ellipse fitting method based on the elliptic hypothesis is proposed for DBH estimation. Experimental results show that the DBH estimation accuracy of the proposed estimation method is improved compared with other methods. The mean root mean squared error (RMSE) of the proposed estimation method is 1.14 cm, compared with other methods with a mean RMSE of 1.70, 2.03, and 2.14 cm. The mean relative accuracy of the proposed estimation method is 95.2%, compared with other methods with a mean relative accuracy of 92.9%, 91.9%, and 90.9%.


2019 ◽  
Vol 11 (18) ◽  
pp. 2154 ◽  
Author(s):  
Ján Šašak ◽  
Michal Gallay ◽  
Ján Kaňuk ◽  
Jaroslav Hofierka ◽  
Jozef Minár

Airborne and terrestrial laser scanning and close-range photogrammetry are frequently used for very high-resolution mapping of land surface. These techniques require a good strategy of mapping to provide full visibility of all areas otherwise the resulting data will contain areas with no data (data shadows). Especially, deglaciated rugged alpine terrain with abundant large boulders, vertical rock faces and polished roche-moutones surfaces complicated by poor accessibility for terrestrial mapping are still a challenge. In this paper, we present a novel methodological approach based on a combined use of terrestrial laser scanning (TLS) and close-range photogrammetry from an unmanned aerial vehicle (UAV) for generating a high-resolution point cloud and digital elevation model (DEM) of a complex alpine terrain. The approach is demonstrated using a small study area in the upper part of a deglaciated valley in the Tatry Mountains, Slovakia. The more accurate TLS point cloud was supplemented by the UAV point cloud in areas with insufficient TLS data coverage. The accuracy of the iterative closest point adjustment of the UAV and TLS point clouds was in the order of several centimeters but standard deviation of the mutual orientation of TLS scans was in the order of millimeters. The generated high-resolution DEM was compared to SRTM DEM, TanDEM-X and national DMR3 DEM products confirming an excellent applicability in a wide range of geomorphologic applications.


2020 ◽  
Vol 50 (10) ◽  
pp. 1012-1024
Author(s):  
Meimei Wang ◽  
Jiayuan Lin

Individual tree height (ITH) is one of the most important vertical structure parameters of a forest. Field measurement and laser scanning are very expensive for large forests. In this paper, we propose a cost-effective method to acquire ITHs in a forest using the optical overlapping images captured by an unmanned aerial vehicle (UAV). The data sets, including a point cloud, a digital surface model (DSM), and a digital orthorectified map (DOM), were produced from the UAV imagery. The canopy height model (CHM) was obtained by subtracting the digital elevation model (DEM) from the DSM removed of low vegetation. Object-based image analysis was used to extract individual tree crowns (ITCs) from the DOM, and ITHs were initially extracted by overlaying ITC outlines on the CHM. As the extracted ITHs were generally slightly shorter than the measured ITHs, a linear relationship was established between them. The final ITHs of the test site were retrieved by inputting extracted ITHs into the linear regression model. As a result, the coefficient of determination (R2), the root mean square error (RMSE), the mean absolute error (MAE), and the mean relative error (MRE) of the retrieved ITHs against the measured ITHs were 0.92, 1.08 m, 0.76 m, and 0.08, respectively.


Author(s):  
Cornelis Stal ◽  
Jeffrey Verbeurgt ◽  
Lars De Sloover ◽  
Alain De Wulf

Abstract Sustainable forest management heavily relies on the accurate estimation of tree parameters. Among others, the diameter at breast height (DBH) is important for extracting the volume and mass of an individual tree. For systematically estimating the volume of entire plots, airborne laser scanning (ALS) data are used. The estimation model is frequently calibrated using manual DBH measurements or static terrestrial laser scans (STLS) of sample plots. Although reliable, this method is time-consuming, which greatly hampers its use. Here, a handheld mobile terrestrial laser scanning (HMTLS) was demonstrated to be a useful alternative technique to precisely and efficiently calculate DBH. Different data acquisition techniques were applied at a sample plot, then the resulting parameters were comparatively analysed. The calculated DBH values were comparable to the manual measurements for HMTLS, STLS, and ALS data sets. Given the comparability of the extracted parameters, with a reduced point density of HTMLS compared to STLS data, and the reasonable increase of performance, with a reduction of acquisition time with a factor of 5 compared to conventional STLS techniques and a factor of 3 compared to manual measurements, HMTLS is considered a useful alternative technique.


2015 ◽  
Vol 77 (26) ◽  
Author(s):  
Nurliyana Izzati Ishak ◽  
Md Afif Abu Bakar ◽  
Muhammad Zulkarnain Abdul Rahman ◽  
Abd Wahid Rasib ◽  
Kasturi Devi Kanniah ◽  
...  

This paper presents a novel non-destructive approach for individual tree stem and branch biomass estimation using terrestrial laser scanning data. The study area is located at the Royal Belum Reserved Forest area, Gerik, Perak. Each forest plot was designed with a circular shape and contains several scanning locations to ensure good visibility of each tree. Unique tree signage was located on trees with diameter at breast height (DBH) of 10cm and above.  Extractions of individual trees were done manually and the matching process with the field collected tree properties were relied on the tree signage and tree location as collected by total station. Individual tree stems were reconstructed based on cylinder models from which the total stem volume was calculated. Biomass of individual tree stems was calculated by multiplying stem volume with specific wood density. Biomass of individual was estimated using similar concept of tree stem with the volume estimated from alpha-hull shape. The root mean squared errors (RMSE) of estimated biomass are 50.22kg and 27.20kg for stem and branch respectively. 


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Di Wang ◽  
Xinlian Liang ◽  
Gislain II Mofack ◽  
Olivier Martin-Ducup

Abstract Background Individual tree extraction from terrestrial laser scanning (TLS) data is a prerequisite for tree-scale estimations of forest biophysical properties. This task currently is undertaken through laborious and time-consuming manual assistance and quality control. This study presents a new fully automatic approach to extract single trees from large-area TLS data. This data-driven method operates exclusively on a point cloud graph by path finding, which makes our method computationally efficient and universally applicable to data from various forest types. Results We demonstrated the proposed method on two openly available datasets. First, we achieved state-of-the-art performance on locating single trees on a benchmark dataset by significantly improving the mean accuracy by over 10% especially for difficult forest plots. Second, we successfully extracted 270 trees from one hectare temperate forest. Quantitative validation resulted in a mean Intersection over Union (mIoU) of 0.82 for single crown segmentation, which further led to a relative root mean square error (RMSE%) of 21.2% and 23.5% for crown area and tree volume estimations, respectively. Conclusions Our method allows automated access to individual tree level information from TLS point clouds. The proposed method is free from restricted assumptions of forest types. It is also computationally efficient with an average processing time of several seconds for one million points. It is expected and hoped that our method would contribute to TLS-enabled wide-area forest qualifications, ranging from stand volume and carbon stocks modelling to derivation of tree functional traits as part of the global ecosystem understanding.


2020 ◽  
Author(s):  
Tuomas Yrttimaa ◽  
Ninni Saarinen ◽  
Ville Luoma ◽  
Topi Tanhuanpää ◽  
Ville Kankare ◽  
...  

The feasibility of terrestrial laser scanning (TLS) in characterizing standing trees has been frequently investigated, while less effort has been put in quantifying downed dead wood using TLS. To advance dead wood characterization using TLS, we collected TLS point clouds and downed dead wood information from 20 sample plots (32 m x 32 m in size) located in southern Finland. This data set can be used in developing new algorithms for downed dead wood detection and characterization as well as for understanding spatial patterns of downed dead wood in boreal forests.


2020 ◽  
Author(s):  
Tuomas Yrttimaa ◽  
Ninni Saarinen ◽  
Ville Luoma ◽  
Topi Tanhuanpää ◽  
Ville Kankare ◽  
...  

Dead wood is a key forest structural component for maintaining biodiversity and storing carbon. Despite its important role in a forest ecosystem, quantifying dead wood alongside standing trees has often neglected when investigating the feasibility of terrestrial laser scanning (TLS) in forest inventories. The objective of this study was therefore to develop an automatic method for detecting and characterizing downed dead wood.


Sign in / Sign up

Export Citation Format

Share Document