scholarly journals Pressure Sensor with New Electrical Circuit Utilizing Bipolar Junction Transistor

2021 ◽  
Author(s):  
Mikhail

High sensitivity MEMS pressure sensor chip for different ranges (1 to 60 kPa) utilizing the novel electrical circuit of piezosensitive differential amplifier with negative feedback loop (PDA-NFL) is developed. Pressure sensor chip PDA-NFL utilizes two bipolar-junction transistors (BJT) with vertical n-p-n type structure (V-NPN) and eight piezoresistors (p-type). Both theoretical model of sensor response to pressure and temperature and experimental data are presented. Data confirms the applicability of theoretical model. Introduction of the amplifier allows for decreasing chip size while keeping the same sensitivity as a chip with classic Wheatstone bridge circuit.

2021 ◽  
Author(s):  
Mikhail Basov

<p>High sensitivity MEMS pressure sensor chip for different ranges (1 to 60 kPa) utilizing the novel electrical circuit of piezosensitive differential amplifier with negative feedback loop (PDA-NFL) is developed. Pressure sensor chip PDA-NFL utilizes two bipolar-junction transistors (BJT) with vertical n-p-n type structure (V-NPN) and eight piezoresistors (p-type). Both theoretical model of sensor response to pressure and temperature and experimental data are presented. Data confirms the applicability of theoretical model. Introduction of the amplifier allows for decreasing chip size while keeping the same sensitivity as a chip with classic Wheatstone bridge circuit.</p>


2021 ◽  
Author(s):  
Mikhail Basov

Abstract High sensitivity MEMS pressure sensor chip for different ranges (1 to 60 kPa) utilizing the novel electrical circuit of piezosensitive differential amplifier with negative feedback loop (PDA-NFL) is developed. Pressure sensor chip PDA-NFL utilizes two bipolar-junction transistors (BJT) with vertical n-p-n type structure (V-NPN) and eight piezoresistors (p–type). Both theoretical model of sensor response to pressure and temperature and experimental data are presented. Data confirms the applicability of theoretical model. Introduction of the amplifier allows for decreasing chip size while keeping the same sensitivity as a chip with classic Wheatstone bridge circuit.


2021 ◽  
Author(s):  
Mikhail Basov

<p>High sensitivity MEMS pressure sensor chip for different ranges (1 to 60 kPa) utilizing the novel electrical circuit of piezosensitive differential amplifier with negative feedback loop (PDA-NFL) is developed. Pressure sensor chip PDA-NFL utilizes two bipolar-junction transistors (BJT) with vertical n-p-n type structure (V-NPN) and eight piezoresistors (p-type). Both theoretical model of sensor response to pressure and temperature and experimental data are presented. Data confirms the applicability of theoretical model. Introduction of the amplifier allows for decreasing chip size while keeping the same sensitivity as a chip with classic Wheatstone bridge circuit.</p>


2021 ◽  
Author(s):  
Mikhail

The theoretical model and experimental characteristics of ultra-high sensitivity MEMS pressure sensor chip for 1 kPa utilizing a novel electrical circuit are presented. The electrical circuit uses piezosensitive differential amplifier with negative feedback loop (PDA-NFL) based on two bipolar-junction transistors (BJT). The BJT has a vertical structure of n-p-n type (V-NPN) formed on a non-deformable chip area. The circuit contains eight piezoresistors located on a profiled membrane in the areas of maximum mechanical stresses. The circuit design provides a balance between high pressure sensitivity (S =44.9 mV/V/kPa) and fairly low temperature coefficient of zero signal (TCZ = 0.094% FS/°C). Additionally, high membrane burst pressure of P = 550 kPa was reached.


2021 ◽  
Author(s):  
Mikhail Basov

The theoretical model and experimental characteristics of ultra-high sensitivity MEMS pressure sensor chip for the range of -1...+1 kPa utilizing a novel electrical circuit are presented. The electrical circuit uses piezosensitive differential amplifier with negative feedback loop (PDA-NFL) based on two bipolar-junction transistors (BJT). The BJT has a vertical structure of n-p-n type (V-NPN) formed on a non-deformable chip area. The circuit contains eight piezoresistors located on a profiled membrane in the areas of maximum mechanical stresses. The circuit design provides a balance between high pressure sensitivity (S = 44.9 mV/V/kPa) and fairly low temperature dependence of zero output signal (TCZ = 0.094% FS/°C). Additionally, high membrane burst pressure of P = 550 kPa was reached.


2021 ◽  
Author(s):  
Mikhail

The paper presents MEMS pressure sensor chip utilizing novel electrical circuit with bipolar-junction transistor-based (BJT) differential amplifier with negative feedback loop (PDA-NFL). Pressure sensor chips with two circuits have been manufactured and tested: the first chip uses circuit with vertical n-p-n (V-NPN) BJTs and the second – circuit with horizontal p-n-p (L-PNP) BJTs. The demonstrated approach allows for increase of pressure sensitivity while keeping the same chip size. It also can be used for chip size reduction and increase of pressure overload capability while maintaining the same pressure sensitivity. Significant reduction of both noise and temperature instability of output signal has been demonstrated using transistor amplifier with negative feedback loop.


2021 ◽  
Author(s):  
Mikhail Basov

Research of pressure sensor chip utilizing novel electrical circuit with bipolar-junction transistor-based (BJT) piezosensitive differential amplifier with negative feedback loop (PDA-NFL) for 5 kPa differential range was done. The significant advantages of developed chip PDA-NFL in the comparative analysis of advanced pressure sensor analogs, which are using the Wheatstone piezoresistive bridge, are clearly shown. The experimental results prove that pressure sensor chip PDA-NFL with 4.0x4.0 mm<sup>2</sup> chip area has sensitivity S = 11.2 ± 1.8 mV/V/kPa with nonlinearity of 2K<sub>NLback</sub> = 0.11 ± 0.09 %/FS (pressure is applied from the back chip side) and 2K<sub>NLtop</sub> = 0.18 ± 0.09 %/FS (pressure is applied from the top chip side). All temperature characteristics have low errors, because the precision elements balance of PDA-NFL electric circuit was used. Additionally, the burst pressure is 80 times higher than the working range.


2021 ◽  
Author(s):  
Mikhail Basov

The paper presents MEMS pressure sensor chip utilizing novel electrical circuit with bipolar-junction transistor-based (BJT) differential amplifier with negative feedback loop (PDA-NFL). Pressure sensor chips with two circuits have been manufactured and tested: the first chip uses circuit with vertical n-p-n (V-NPN) BJTs and the second – circuit with horizontal p-n-p (L-PNP) BJTs. The demonstrated approach allows for increase of pressure sensitivity while keeping the same chip size. It also can be used for chip size reduction and increase of pressure overload capability while maintaining the same pressure sensitivity. Significant reduction of both noise and temperature instability of output signal has been demonstrated using transistor amplifier with negative feedback loop.


2021 ◽  
Author(s):  
Mikhail Basov

The theoretical model and experimental characteristics of ultra-high sensitivity MEMS pressure sensor chip for the range of -1...+1 kPa utilizing a novel electrical circuit are presented. The electrical circuit uses piezosensitive differential amplifier with negative feedback loop (PDA-NFL) based on two bipolar-junction transistors (BJT). The BJT has a vertical structure of n-p-n type (V-NPN) formed on a non-deformable chip area. The circuit contains eight piezoresistors located on a profiled membrane in the areas of maximum mechanical stresses. The circuit design provides a balance between high pressure sensitivity (S = 44.9 mV/V/kPa) and fairly low temperature dependence of zero output signal (TCZ = 0.094% FS/°C). Additionally, high membrane burst pressure of P = 550 kPa was reached.


2021 ◽  
Author(s):  
Mikhail ◽  
Denis Prigodskiy

The paper describes modeling of high-sensitivity MEMS pressure sensor based on a circuit containing both active and passive stress-sensitive elements: a differential amplifier utilizing two n-p-n transistors and four p-type piezoresistors. The analysis on the basis of the developed mathematical model for a pressure sensor with traditional piezoresistive Wheatstone bridge and theoretical conclusions regarding the change in the electrical parameters of a bipolar transistor under the influence of deformation was carried out.


Sign in / Sign up

Export Citation Format

Share Document