scholarly journals The world’s second-largest, recorded landslide event: lessons learnt from the landslides triggered during and after the 2018 Mw 7.5 Papua New Guinea earthquake

2021 ◽  
Author(s):  
Hakan Tanyas ◽  
Kevin Hill ◽  
Luke Mahoney ◽  
Islam Fadel ◽  
Luigi Lombardo

Widespread landslide events provide rare but valuable opportunities to investigate the spatial and size distributions of landslides in relation to seismic, climatic, geological and morphological factors. This study presents a unique event inventory for the co-seismic landslides induced by the February 25, 2018 Mw 7.5 Papua New Guinea earthquake as well as its post-seismic counterparts including the landslides triggered by either aftershocks or succeeding rainfall events that occurred between February 26 and March 19. We mapped approximately 11,500 landslides of which more than 10,000 were triggered by the mainshock with a total failed planimetric area of about 145 km2. Such a large area makes this inventory the world’s second-largest recorded landslide event after the 2008 Wenchuan earthquake. Large landslides are abundant throughout the study area located within the remote Papua New Guinea Highlands. Specifically, more than half of the landslide population is larger than 50,000 m2 and overall, post-seismic landslides are even larger than their co-seismic counterparts. Our analyses indicate that large and widespread landslides were triggered as a result of the compound effects of the strong seismicity, complex geology, steep topography and high rainfall. We statistically show that the 15-day antecedent precipitation, as a predisposing factor, contributes to the spatial distribution of co-seismic landslides. Also, we statistically demonstrate that the cumulative effect of aftershocks is the main factor disturbing steep hillslopes and causing the initiation of very large landslides up to the size of ~5 km2. Taking aside the role of the intense seismic swarm and antecedent precipitation, these inventories also provide evidence for landslide events where the active tectonics contribute to weaken hillslopes and the fatigue damage. Overall, the dataset and the findings provided by this paper is a step forward in seismic landslide hazard assessment of the entire Papua New Guinea mainland.

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Daniela Rodriguez-Rodriguez ◽  
Seri Maraga ◽  
Lina Lorry ◽  
Leanne J. Robinson ◽  
Peter M. Siba ◽  
...  

Abstract Background Long-lasting insecticidal nets (LLIN), improved diagnosis and artemisinin-based combination therapy (ACT) have reduced malaria prevalence in Papua New Guinea since 2008. Yet, national incidence trends are inconclusive due to confounding effects of the scale-up of rapid diagnostic tests, and inconsistencies in routine reporting. Methods Malaria trends and their association with LLIN and ACT roll-out between 2010 and 2014 in seven sentinel health facilities were analysed. The analysis included 35,329 fever patients. Intervention effects were estimated using regression models. Results Malaria incidence initially ranged from 20 to 115/1000 population; subsequent trends varied by site. Overall, LLIN distributions had a cumulative effect, reducing the number of malaria cases with each round (incidence rate ratio ranging from 0.12 to 0.53 in five sites). No significant reduction was associated with ACT introduction. Plasmodium falciparum remained the dominant parasite in all sentinel health facilities. Resurgence occurred in one site in which a shift to early and outdoor biting of anophelines had previously been documented. Conclusions LLINs, but not ACT, were associated with reductions of malaria cases in a range of settings, but sustainability of the gains appear to depend on local factors. Malaria programmes covering diverse transmission settings such as Papua New Guinea must consider local heterogeneity when choosing interventions and ensure continuous monitoring of trends.


2018 ◽  
Author(s):  
Akio Katsumata ◽  
Yasuhiro Yoshida ◽  
Kenji Nakata ◽  
Kenichi Fujita ◽  
Masayuki Tanaka ◽  
...  

Abstract. On 17 July 1998, a tsunami caused serious damage on the northern coast of Papua New Guinea about 20 min after the mainshock of an Mw 7.0 earthquake. The tsunami has been attributed to a submarine landslide that occurred about 13 min after the mainshock because its arrival at the coast was too late and its height too great to be the direct result of the fault slip of the earthquake. Bathymetric data recorded after the tsunami revealed an amphitheater-like structure that was consistent with a recent submarine landslide. Most current tsunami warning systems are based on analysis of the early arrivals of seismic waves generated by an earthquake. In this study we investigated whether evidence of the landslide could be identified in the coda waves recorded after the mainshock. Based on previous studies of the tsunami source, we constructed synthetic seismograms to represent the submarine landslide and compared them to the observed coda waves of the preceding earthquake, with particular attention to the period around 13 min after the mainshock. We found phases possibly corresponding to the landslide event. However, they were easily covered with coda waves from the mainshock. We concluded that the 1998 landslide was too small to be evident in the coda waves following the magnitude 7 earthquake.


Author(s):  
Donald Denoon ◽  
Kathleen Dugan ◽  
Leslie Marshall

1984 ◽  
Vol 29 (10) ◽  
pp. 786-788
Author(s):  
Patricia M. Greenfield

2012 ◽  
Author(s):  
Esteban Tristan ◽  
Mei-Chuan Kung ◽  
Peter Caccamo

Sign in / Sign up

Export Citation Format

Share Document