scholarly journals Breadth-First Search Multi-Dimensional Binary Search Tree based Algorithms for Structural

2022 ◽  
Author(s):  
Zhifeng Xu

This research proposes a set of novel algorithms for structural reliability estimation based on muti-dimensional binary search tree and breadth-first search, namely the reliability accuracy supervised searching algorithm, the limit-state surface resolution supervised searching algorithm and the reliability index precision supervised fast searching algorithm. The proposed algorithms have the following strengths: 1, all the proposed algorithms have satisfactory computational efficiency by reducing redundant samplings; 2, their computational costs are stable and computable; 3, performance functions of high non-linearity can be will handled; 4, the reliability accuracy supervised searching algorithm can adapt its computational cost according to a prescribed accuracy; 5, the limit-state surface resolution supervised searching algorithm is able to probe sharp changes on limit-state surfaces; 6, the reliability index precision supervised fast searching algorithm computes the reliability index with sufficient precision in a fast way.

2020 ◽  
Author(s):  
Nafiseh Kiani

Structural reliability analysis is necessary to predict the uncertainties which may endanger the safety of structures during their lifetime. Structural uncertainties are associated with design, construction and operation stages. In design of structures, different limit states or failure functions are suggested to be considered by design specifications. Load and resistance factors are two essential parameters which have significant impact on evaluating the uncertainties. These load and resistance factors are commonly determined using structural reliability methods. The purpose of this study is to determine the reliability index for a typical highway bridge by considering the maximum moment generated by vehicle live loads on the bridge as a random variable. The limit state function was formulated and reliability index was determined using the First Order Reliability Methods (FORM) method.


Cryptography ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Bayan Alabdullah ◽  
Natalia Beloff ◽  
Martin White

Data security has become crucial to most enterprise and government applications due to the increasing amount of data generated, collected, and analyzed. Many algorithms have been developed to secure data storage and transmission. However, most existing solutions require multi-round functions to prevent differential and linear attacks. This results in longer execution times and greater memory consumption, which are not suitable for large datasets or delay-sensitive systems. To address these issues, this work proposes a novel algorithm that uses, on one hand, the reflection property of a balanced binary search tree data structure to minimize the overhead, and on the other hand, a dynamic offset to achieve a high security level. The performance and security of the proposed algorithm were compared to Advanced Encryption Standard and Data Encryption Standard symmetric encryption algorithms. The proposed algorithm achieved the lowest running time with comparable memory usage and satisfied the avalanche effect criterion with 50.1%. Furthermore, the randomness of the dynamic offset passed a series of National Institute of Standards and Technology (NIST) statistical tests.


2021 ◽  
Author(s):  
ZEGOUR Djamel Eddine

Abstract Today, Red-Black trees are becoming a popular data structure typically used to implement dictionaries, associative arrays, symbol tables within some compilers (C++, Java …) and many other systems. In this paper, we present an improvement of the delete algorithm of this kind of binary search tree. The proposed algorithm is very promising since it colors differently the tree while reducing color changes by a factor of about 29%. Moreover, the maintenance operations re-establishing Red-Black tree balance properties are reduced by a factor of about 11%. As a consequence, the proposed algorithm saves about 4% on running time when insert and delete operations are used together while conserving search performance of the standard algorithm.


Author(s):  
K Woloszyk ◽  
Y Garbatov

The work is focused on the reliability of corroded stiffened plates subjected to compressive uniaxial load based on the progressive collapse approach as stipulated by the Common Structural Rules for Bulk Carriers and Oil Tankers, employing the limit state design. Two different cases have been investigated. In the first model, the corrosion degradation led to uniform thickness loss, whereas the mechanical properties were unchanged, as given in the Rules. In the second model, the plate thickness degradation was followed by mechanical properties reduction. The uncertainties related to the mechanical properties, thicknesses, and initial imperfections of the corroded stiffened plate were taken into account. Several initial design solutions of stiffened plates, as well as different severity levels of corrosion degradation were investigated. The results show that structural reliability significantly decreases with corrosion development, especially when in addition to the initial imperfections and corrosion plate thickness reduction, corroded plate surface roughness and the changes in the mechanical properties were considered. The uncertainties, their origins and confidence levels are discussed. It was found that non-linear time-dependent corrosion degradation accounting not only for the thickness reduction due to corrosion wastage but also the subsequent decrease of mechanical properties lead to a significant reduction in the reliability index. Additionally, it was defined that the reliability estimate is very sensitive to the uncertainties related to the initial thickness and the spread of corrosion degradation as a function of the time. Incorporating the probability of corrosion detection into the original reliability model introduces additional information about the validity of structural degradation that may lead to a higher beta reliability index estimate compared to the original model.


Author(s):  
Chengwen Chris Wang ◽  
Daniel Sleator

2021 ◽  
pp. 143-150
Author(s):  
Tomohiro I ◽  
Robert W. Irving ◽  
Dominik Köppl ◽  
Lorna Love

Sign in / Sign up

Export Citation Format

Share Document