scholarly journals Sources of interference in item and associative recognition memory

2021 ◽  
Author(s):  
Adam F Osth ◽  
Simon Dennis

A powerful theoretical framework for exploring recognition memory is the global matchingframework, in which a cue’s memory strength reflects the similarity of the retrieval cuesbeing matched against the contents of memory simultaneously. Contributions at retrievalcan be categorized as matches and mismatches to the item and context cues, including theself match (match on item and context), item noise (match on context, mismatch on item),context noise (match on item, mismatch on context), and background noise (mismatch onitem and context). We present a model that directly parameterizes the matches andmismatches to the item and context cues, which enables estimation of the magnitude ofeach interference contribution (item noise, context noise, and background noise). Themodel was fit within a hierarchical Bayesian framework to ten recognition memory datasetsthat employ manipulations of strength, list length, list strength, word frequency, study-testdelay, and stimulus class in item and associative recognition. Estimates of the modelparameters revealed at most a small contribution of item noise that varies by stimulusclass, with virtually no item noise for single words and scenes. Despite the unpopularity ofbackground noise in recognition memory models, background noise estimates dominated atretrieval across nearly all stimulus classes with the exception of high frequency words,which exhibited equivalent levels of context noise and background noise. These parameterestimates suggest that the majority of interference in recognition memory stems fromexperiences acquired prior to the learning episode.

2021 ◽  
Vol 11 (6) ◽  
pp. 719
Author(s):  
Monika Toth ◽  
Anke Sambeth ◽  
Arjan Blokland

The processing of pre-experimentally unfamiliar stimuli such as abstract figures and non-words is poorly understood. Here, we considered the role of memory strength in the discrimination process of such stimuli using a three-phase old/new recognition memory paradigm. Memory strength was manipulated as a function of the levels of processing (deep vs. shallow) and repetition. Behavioral results were matched to brain responses using EEG. We found that correct identification of the new abstract figures and non-words was superior to old item recognition when they were merely studied without repetition, but not when they were semantically processed or drawn. EEG results indicated that successful new item identification was marked by a combination of the absence of familiarity (N400) and recollection (P600) for the studied figures. For both the abstract figures and the non-words, the parietal P600 was found to differentiate between the old and new items (late old/new effects). The present study extends current knowledge on the processing of pre-experimentally unfamiliar figurative and verbal stimuli by showing that their discrimination depends on experimentally induced memory strength and that the underlying brain processes differ. Nevertheless, the P600, similar to pre-experimentally familiar figures and words, likely reflects improved recognition memory of meaningless pictorial and verbal items.


2003 ◽  
Vol 23 (28) ◽  
pp. 9439-9444 ◽  
Author(s):  
Emrah Düzel ◽  
Reza Habib ◽  
Michael Rotte ◽  
Sebastian Guderian ◽  
Endel Tulving ◽  
...  

2019 ◽  
Author(s):  
Shota Shimoda ◽  
Takaaki Ozawa ◽  
Yukio Ichitani ◽  
Kazuo Yamada

AbstractSpontaneous recognition tests, which utilize rodents’ innate tendency to explore novelty, can evaluate not only simple non-associative recognition memory but also more complex associative memory in animals. In the present study, we investigated whether the length of the object familiarization period (sample phase) improved subsequent novelty discrimination in the spontaneous object, place, and object-place-context (OPC) recognition tests in rats. In the OPC test, rats showed a significant novelty preference only when the familiarization period was 30 min but not when it was 5 min or 15 min. However, the rats exhibited a successful discrimination between the stayed and replaced objects under 15 min and 30 min familiarization period conditions in the place recognition test and between the novel and familiar objects under all conditions of 5, 15 and 30 min in the object recognition test. Our results suggest that the extension of the familiarization period improves performance in the spontaneous recognition paradigms, and a longer familiarization period is necessary for long-term associative recognition memory than for non-associative memory.


2010 ◽  
Vol 22 (6) ◽  
pp. 922-943 ◽  
Author(s):  
Christine Bastin ◽  
Martial van der Linden ◽  
Caroline Schnakers ◽  
Daniela Montaldi ◽  
Andrew R. Mayes

2020 ◽  
Vol 73 (8) ◽  
pp. 1242-1260
Author(s):  
Rory W Spanton ◽  
Christopher J Berry

Despite the unequal variance signal-detection (UVSD) model’s prominence as a model of recognition memory, a psychological explanation for the unequal variance assumption has yet to be verified. According to the encoding variability hypothesis, old item memory strength variance (σo) is greater than that of new items because items are incremented by variable, rather than fixed, amounts of strength at encoding. Conditions that increase encoding variability should therefore result in greater estimates of σo. We conducted three experiments to test this prediction. In Experiment 1, encoding variability was manipulated by presenting items for a fixed or variable (normally distributed) duration at study. In Experiment 2, we used an attentional manipulation whereby participants studied items while performing an auditory one-back task in which distractors were presented at fixed or variable intervals. In Experiment 3, participants studied stimuli with either high or low variance in word frequency. Across experiments, estimates of σo were unaffected by our attempts to manipulate encoding variability, even though the manipulations weakly affected subsequent recognition. Instead, estimates of σo tended to be positively correlated with estimates of the mean difference in strength between new and studied items ( d), as might be expected if σo generally scales with d. Our results show that it is surprisingly hard to successfully manipulate encoding variability, and they provide a signpost for others seeking to test the encoding variability hypothesis.


NeuroImage ◽  
2020 ◽  
Vol 221 ◽  
pp. 117214
Author(s):  
M. Derner ◽  
G. Dehnen ◽  
L. Chaieb ◽  
T.P. Reber ◽  
V. Borger ◽  
...  

2014 ◽  
Vol 61 ◽  
pp. 123-134 ◽  
Author(s):  
Regine Bader ◽  
Bertram Opitz ◽  
Wolfgang Reith ◽  
Axel Mecklinger

Sign in / Sign up

Export Citation Format

Share Document