scholarly journals Parallel Regulation of Past, Present, and Future Actions During Sequencing

2018 ◽  
Author(s):  
Lawrence P. Behmer ◽  
Kelly J. Jantzen ◽  
Matthew Crump

Past, present, and future actions must be regulated online to produce sequences of actions, but the regulation process is not well understood because of measurement limitations. We provide the first direct tests of the parallel action regulation hypothesis during sequencing in humans. We used transcranial magnetic stimulation to probe the level of excitation for flexion of the right index finger during typing. Motor evoked potentials (MEPs) were recorded at the onset of typing 5-letter words and nonwords. A single letter typed by the right index finger varied across letter positions 1 to 5. MEP amplitude was largest for the upcoming action in the second position and decreased monotonically across future serial positions, suggesting a serial inhibition process regulates all future actions in parallel during sequencing. This is the most direct human evidence to date corroborating models of sequence production that assume parallel regulation of actions.

2020 ◽  
Vol 129 (6) ◽  
pp. 1393-1404
Author(s):  
Joseph F. Welch ◽  
Patrick J. Argento ◽  
Gordon S. Mitchell ◽  
Emily J. Fox

Transcranial magnetic stimulation (TMS) is a noninvasive technique to assess neural impulse conduction along the cortico-diaphragmatic pathway. The reliability of diaphragm motor-evoked potentials (MEP) induced by TMS is unknown. Notwithstanding large variability in MEP amplitude, we found good-to-excellent reproducibility of all MEP characteristics (latency, duration, amplitude, and area) both within- and between-day in healthy adult men and women. Our findings support the use of TMS and surface EMG to assess diaphragm activation in humans.


2020 ◽  
Author(s):  
Isaac N. Gomez ◽  
Kara Ormiston ◽  
Ian Greenhouse

AbstractAction preparation involves widespread modulation of motor system excitability, but the precise mechanisms are unknown. In this study, we investigated whether intracortical inhibition changes in task-irrelevant muscle representations during action preparation. We used transcranial magnetic stimulation (TMS) combined with electromyography in healthy human adults to measure motor evoked potentials (MEPs) and cortical silent periods (CSPs) in task-irrelevant muscles during the preparatory period of simple delayed response tasks. In Experiment 1, participants responded with the left-index finger in one task condition and the right-index finger in another task condition, while MEPs and CSPs were measured from the contralateral non-responding and tonically contracted index finger. During Experiment 2, participants responded with the right pinky finger while MEPs and CSPs were measured from the tonically contracted left-index finger. In both experiments, MEPs and CSPs were compared between the task preparatory period and a resting intertrial baseline. The CSP duration during response preparation decreased from baseline in every case. A laterality difference was also observed in Experiment 1, with a greater CSP reduction during the preparation of left finger responses compared to right finger responses. MEP amplitudes showed no modulation during movement preparation in any of the three response conditions. These findings indicate cortical inhibition associated with task-irrelevant muscles is transiently released during action preparation and implicate a novel mechanism for the controlled and coordinated release of motor cortex inhibition.New & NoteworthyIn this study we observed the first evidence of a release of intracortical inhibition in task-irrelevant muscle representations during response preparation. We applied transcranial magnetic stimulation to elicit cortical silent periods in task-irrelevant muscles during response preparation and observed a consistent decrease in the silent period duration relative to a resting baseline. These findings address the question of whether cortical mechanisms underlie widespread modulation in motor excitability during response preparation.


NeuroImage ◽  
2004 ◽  
Vol 21 (4) ◽  
pp. 1805-1817 ◽  
Author(s):  
S.F.W. Neggers ◽  
T.R. Langerak ◽  
D.J.L.G. Schutter ◽  
R.C.W. Mandl ◽  
N.F. Ramsey ◽  
...  

Nosotchu ◽  
2000 ◽  
Vol 22 (4) ◽  
pp. 601-604
Author(s):  
Hitoshi Morimitsu ◽  
Akira Oukura ◽  
Takashi Tokutomi ◽  
Houtetsu Shimamoto ◽  
Minoru Shigemori

Sign in / Sign up

Export Citation Format

Share Document