scholarly journals Our Inherent Need for Associative Coherence.

2020 ◽  
Author(s):  
Yael Afiki ◽  
Moshe Bar

The world around us consists of typical settings manifested as statistical regularities and stored as associations. These associations are beneficial for performance and serve as a source of stability in our perception of a coherent surroundings. What happens when such associativity is not apparent? We presented pairs of associated images and pairs of non-associated images and compared their corresponding effect on subsequent performance in three different visual perception paradigms: contrast-sensitivity, global vs. local perception, and critical-flicker-fusion. In all three experiments, performance was significantly inferior when preceded by images with no clear associative connection. We argue that these results reflect our inherent need to find coherence in our environment. When it is not easily detected, we continue to seek an associative link, which in our case persisted and posed a cognitive load on subsequent performance.

2021 ◽  
Author(s):  
◽  
Kevin Lawrence Woo

<p>Scientific investigation of the sensory world and behavior of the tuatara is limited. This study incorporates both ecological and psychological perspectives to test learning and visual perception using a novel operant technique and flicker-fusion rates to measure visual discrimination in tuatara. We posed four main questions: (1) can a reliable method examine learning and visual perception in tuatara?, (2) what is the critical flicker-fusion (CFF) rates for tuatara and how does it relate to motion detection ability?, (3) can stimulus control be transferred to a Y-maze from an open field arena?, and (4) what are the implications for behavioral ecology, conservation, and species welfare? Tuatara (Sphenodon punctatus) were trained using an operant conditioning procedure with food reinforcement to respond to discriminative stimuli (S+) of various flicker-fusion rates, and ignore a non-discriminative stimulus (S-). Tuatara discriminated CFF rates between 2.65-45.61 Hz, but not at 65.09 Hz. The upper threshold between 45.61-65.09 Hz is comparable to other mammalian, avian, and herpetological species. Tuatara demonstrated a learning capacity for acquisition of an operant task as well as cognitive development for learning and memory strategies. Visual discrimination is important to tuatara and may facilitate behavioral responses to many context-dependent ecological processes (i.e., predator/prey/kin recognition, mate selection, environmental discrimination, optimal foraging strategies, and communication). By understanding the importance of visual stimuli, the study provides a better perspective of the tuatara natural sensory world. Additionally, a reliable method was established that can be used for more comprehensive psychophysical experiments to further access visual perception and learning in all reptiles, with the potential to examine other sensory mechanisms such as audition, chemoreception, and tactility.</p>


2021 ◽  
Author(s):  
◽  
Kevin Lawrence Woo

<p>Scientific investigation of the sensory world and behavior of the tuatara is limited. This study incorporates both ecological and psychological perspectives to test learning and visual perception using a novel operant technique and flicker-fusion rates to measure visual discrimination in tuatara. We posed four main questions: (1) can a reliable method examine learning and visual perception in tuatara?, (2) what is the critical flicker-fusion (CFF) rates for tuatara and how does it relate to motion detection ability?, (3) can stimulus control be transferred to a Y-maze from an open field arena?, and (4) what are the implications for behavioral ecology, conservation, and species welfare? Tuatara (Sphenodon punctatus) were trained using an operant conditioning procedure with food reinforcement to respond to discriminative stimuli (S+) of various flicker-fusion rates, and ignore a non-discriminative stimulus (S-). Tuatara discriminated CFF rates between 2.65-45.61 Hz, but not at 65.09 Hz. The upper threshold between 45.61-65.09 Hz is comparable to other mammalian, avian, and herpetological species. Tuatara demonstrated a learning capacity for acquisition of an operant task as well as cognitive development for learning and memory strategies. Visual discrimination is important to tuatara and may facilitate behavioral responses to many context-dependent ecological processes (i.e., predator/prey/kin recognition, mate selection, environmental discrimination, optimal foraging strategies, and communication). By understanding the importance of visual stimuli, the study provides a better perspective of the tuatara natural sensory world. Additionally, a reliable method was established that can be used for more comprehensive psychophysical experiments to further access visual perception and learning in all reptiles, with the potential to examine other sensory mechanisms such as audition, chemoreception, and tactility.</p>


2021 ◽  
pp. 096372142199033
Author(s):  
Katherine R. Storrs ◽  
Roland W. Fleming

One of the deepest insights in neuroscience is that sensory encoding should take advantage of statistical regularities. Humans’ visual experience contains many redundancies: Scenes mostly stay the same from moment to moment, and nearby image locations usually have similar colors. A visual system that knows which regularities shape natural images can exploit them to encode scenes compactly or guess what will happen next. Although these principles have been appreciated for more than 60 years, until recently it has been possible to convert them into explicit models only for the earliest stages of visual processing. But recent advances in unsupervised deep learning have changed that. Neural networks can be taught to compress images or make predictions in space or time. In the process, they learn the statistical regularities that structure images, which in turn often reflect physical objects and processes in the outside world. The astonishing accomplishments of unsupervised deep learning reaffirm the importance of learning statistical regularities for sensory coding and provide a coherent framework for how knowledge of the outside world gets into visual cortex.


2009 ◽  
Vol 67 (2) ◽  
pp. 180-190 ◽  
Author(s):  
Julia Boyle ◽  
Philippe Danjou ◽  
Robert Alexander ◽  
Nicole Calder ◽  
Cynthia Gargano ◽  
...  

2010 ◽  
Vol 33 (2-3) ◽  
pp. 61-83 ◽  
Author(s):  
Joseph Henrich ◽  
Steven J. Heine ◽  
Ara Norenzayan

AbstractBehavioral scientists routinely publish broad claims about human psychology and behavior in the world's top journals based on samples drawn entirely from Western, Educated, Industrialized, Rich, and Democratic (WEIRD) societies. Researchers – often implicitly – assume that either there is little variation across human populations, or that these “standard subjects” are as representative of the species as any other population. Are these assumptions justified? Here, our review of the comparative database from across the behavioral sciences suggests both that there is substantial variability in experimental results across populations and that WEIRD subjects are particularly unusual compared with the rest of the species – frequent outliers. The domains reviewed include visual perception, fairness, cooperation, spatial reasoning, categorization and inferential induction, moral reasoning, reasoning styles, self-concepts and related motivations, and the heritability of IQ. The findings suggest that members of WEIRD societies, including young children, are among the least representative populations one could find for generalizing about humans. Many of these findings involve domains that are associated with fundamental aspects of psychology, motivation, and behavior – hence, there are no obviousa priorigrounds for claiming that a particular behavioral phenomenon is universal based on sampling from a single subpopulation. Overall, these empirical patterns suggests that we need to be less cavalier in addressing questions ofhumannature on the basis of data drawn from this particularly thin, and rather unusual, slice of humanity. We close by proposing ways to structurally re-organize the behavioral sciences to best tackle these challenges.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sonia Ortiz-Peregrina ◽  
Carolina Ortiz ◽  
Miriam Casares-López ◽  
José R. Jiménez ◽  
Rosario G. Anera

AbstractCannabis is one of the most used drugs of abuse in the world. The objective of this study was to analyze the effects of smoking cannabis on vision and to relate these to those perceived by the user. Thirty-one cannabis users participated in this study. Visual function assessment was carried out in a baseline session as well as after smoking cannabis. We evaluated static visual acuity, contrast sensitivity, stereoacuity, accommodative response, straylight, night-vision disturbances (halos) and pupil size. The participants were also divided into two groups depending on whether they perceived their vision to have worsened after smoking cannabis. A logistic regression analysis was employed to identify which visual test could best predict self-perceived visual effects. The study found that smoking cannabis has significant adverse effects on all the visual parameters analyzed (p < 0.05). Self-perceived visual quality results revealed that about two thirds of the sample think that smoking cannabis impairs their vision. Contrast sensitivity, specifically for the spatial frequency 18 cpd, was identified as the only visual parameter significantly associated with self-perceived visual quality (Odds Ratio: 1.135; p = 0.040). Smoking cannabis is associated with negative effects on visual function. Self-perceived visual quality after smoking cannabis could be related to impaired contrast sensitivity.


Author(s):  
Olaf Truszczyński ◽  
Mieczysław Wojtkowiak ◽  
Marcin Biernacki ◽  
Krzysztof Kowalczuk

Sign in / Sign up

Export Citation Format

Share Document