scholarly journals Conceptual distinctiveness does not improve visual working memory for objects but aids object-location binding

2021 ◽  
Author(s):  
Yuri Markov ◽  
Igor Utochkin

Visual working memory (VWM) is prone to interference from stored items competing for its limited capacity. These competitive interactions can arise from different sources. For example, one such source is poor item distinctiveness causing a failure to discriminate between items sharing common features. Another source of interference is imperfect binding, a problem of determining which of the remembered features belonged to which object or which item was in which location. In two experiments, we studied how the conceptual distinctiveness of real-world objects (i.e., whether the objects belong to the same or different basic categories) affects VWM for objects and object-location binding. In Experiment 1, we found that distinctiveness did not affect memory for object identities or for locations, but low-distinctive objects were more frequently reported at “swapped” locations that originally went with different objects. In Experiment 2 we found evidence that the effect of distinctiveness on the object-location swaps was due to the use of categorical information for binding. In particular, we found that observers swapped the location of a tested object with another object from the same category more frequently than with any of the objects from another category. This suggests that observers can use some coarse category-location information when objects are conceptually distinct. Taken together, our findings suggest that object distinction and object-location binding act upon different components of VWM.

Cortex ◽  
2018 ◽  
Vol 102 ◽  
pp. 6-13 ◽  
Author(s):  
Dirk van Moorselaar ◽  
Surya Gayet ◽  
Chris L.E. Paffen ◽  
Jan Theeuwes ◽  
Stefan Van der Stigchel ◽  
...  

2001 ◽  
Vol 13 (6) ◽  
pp. 766-785 ◽  
Author(s):  
Antonino Raffone ◽  
Gezinus Wolters

Luck and Vogel (1997) showed that the storage capacity of visual working memory is about four objects and that this capacity does not depend on the number of features making up the objects. Thus, visual working memory seems to process integrated objects rather than individual features, just as verbal working memory handles higher-order “chunks” instead of individual features or letters. In this article, we present a model based on synchronization and desynchronization of reverberatory neural assemblies, which can parsimoniously account for both the limited capacity of visual working memory, and for the temporary binding of multiple assemblies into a single pattern. A critical capacity of about three to four independent patterns showed up in our simulations, consistent with the results of Luck and Vogel. The same desynchronizing mechanism optimizing phase segregation between assemblies coding for separate features or multifeature objects poses a limit to the number of oscillatory reverberations. We show how retention of multiple features as visual chunks (feature conjunctions or objects) in terms of synchronized reverberatory assemblies may be achieved with and without long-term memory guidance.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9398
Author(s):  
Wanja A. Mössing ◽  
Niko A. Busch

The limited capacity of visual working memory (vWM) necessitates the efficient allocation of available resources by prioritizing relevant over irrelevant items. Retro-cues, which inform about the future relevance of items after encoding has already finished, can improve the quality of memory representations of the relevant items. A candidate mechanism of this retro-cueing benefit is lateralization of neural oscillations in the alpha-band, but its precise role is still debated. The relative decrease of alpha power contralateral to the relevant items has been interpreted as supporting inhibition of irrelevant distractors or as supporting maintenance of relevant items. Here, we aimed at resolving this debate by testing how the magnitude of alpha-band lateralization affects behavioral performance: does stronger lateralization improve the precision of the relevant memory or does it reduce the biasing influence of the irrelevant distractor? We found that it does neither: while the data showed a clear retro-cue benefit and a biasing influence of non-target items as well as clear cue-induced alpha-band lateralization, the magnitude of this lateralization was not correlated with any performance parameter. This finding may indicate that alpha-band lateralization, which is typically observed in response to mnemonic cues, indicates an automatic shift of attention that only coincides with, but is not directly involved in mnemonic prioritization.


2021 ◽  
Author(s):  
Allison Fitch ◽  
Nilam Thaker ◽  
Zsuzsa Kaldy

Verbal labels have been shown to help preverbal infants’ performance on various cognitive tasks, such as categorization. Redundant labels also aid adults’ visual working memory (WM), but it is not known if this linguistic benefit extends to preverbal infants’ WM. In two eye-tracking studies, we tested whether 8- and 10-month-old infants’ WM performance would improve with the presence of redundant labels in a Delayed Match Retrieval (DMR) paradigm that tested infants’ WM for object-location bindings. Findings demonstrated that infants at both ages were unable to remember two object-location bindings when co-presented with labels at encoding. Moreover, infants who encoded the object-location bindings with labels were not significantly better than those who did so in silence. These findings are discussed in the context of label advantages in cognition and auditory dominance.


2015 ◽  
Vol 15 (12) ◽  
pp. 659
Author(s):  
Jumana Ahmad ◽  
Anna Nobre ◽  
Kimron Shapiro ◽  
Fiona McNab

Sign in / Sign up

Export Citation Format

Share Document