scholarly journals Adaptive empathy: A model for learning empathic responses based on feedback

2021 ◽  
Author(s):  
Uri Hertz ◽  
Simone Shamay-Tsoory

Empathy is usually deployed in social interactions. Nevertheless, common measures and examinations of empathy study this construct in isolation from the person in distress. In this paper we seek to extend the field of examination to include both empathizer and target in order to determine whether and how empathic responses are affected by feedback and learned through interaction. Building on computational approaches in feedback-based adaptations (e.g., no feedback, model-free and model-based learning), we propose a framework for understanding how empathic responses are learned based on feedback. In this framework, adaptive empathy, defined as the ability to adapt one’s empathic responses, is a central aspect of empathic skills, and can provide a new dimension to the evaluation and investigation of empathy. By extending existing neural models of empathy, we suggest that adaptive empathy may be mediated by interactions between the neural circuits associated with valuation, shared distress, observation-execution and mentalizing. Finally, we propose that adaptive empathy should be considered as a prominent facet of empathic capabilities with the potential to explain empathic behavior in health and in psychopathology.

2016 ◽  
Author(s):  
Evan M. Russek ◽  
Ida Momennejad ◽  
Matthew M. Botvinick ◽  
Samuel J. Gershman ◽  
Nathaniel D. Daw

AbstractHumans and animals are capable of evaluating actions by considering their long-run future rewards through a process described using model-based reinforcement learning (RL) algorithms. The mechanisms by which neural circuits perform the computations prescribed by model-based RL remain largely unknown; however, multiple lines of evidence suggest that neural circuits supporting model-based behavior are structurally homologous to and overlapping with those thought to carry out model-free temporal difference (TD) learning. Here, we lay out a family of approaches by which model-based computation may be built upon a core of TD learning. The foundation of this framework is the successor representation, a predictive state representation that, when combined with TD learning of value predictions, can produce a subset of the behaviors associated with model-based learning, while requiring less decision-time computation than dynamic programming. Using simulations, we delineate the precise behavioral capabilities enabled by evaluating actions using this approach, and compare them to those demonstrated by biological organisms. We then introduce two new algorithms that build upon the successor representation while progressively mitigating its limitations. Because this framework can account for the full range of observed putatively model-based behaviors while still utilizing a core TD framework, we suggest that it represents a neurally plausible family of mechanisms for model-based evaluation.Author SummaryAccording to standard models, when confronted with a choice, animals and humans rely on two separate, distinct processes to come to a decision. One process deliberatively evaluates the consequences of each candidate action and is thought to underlie the ability to flexibly come up with novel plans. The other process gradually increases the propensity to perform behaviors that were previously successful and is thought to underlie automatically executed, habitual reflexes. Although computational principles and animal behavior support this dichotomy, at the neural level, there is little evidence supporting a clean segregation. For instance, although dopamine — famously implicated in drug addiction and Parkinson’s disease — currently only has a well-defined role in the automatic process, evidence suggests that it also plays a role in the deliberative process. In this work, we present a computational framework for resolving this mismatch. We show that the types of behaviors associated with either process could result from a common learning mechanism applied to different strategies for how populations of neurons could represent candidate actions. In addition to demonstrating that this account can produce the full range of flexible behavior observed in the empirical literature, we suggest experiments that could detect the various approaches within this framework.


2020 ◽  
Vol 43 ◽  
Author(s):  
Peter Dayan

Abstract Bayesian decision theory provides a simple formal elucidation of some of the ways that representation and representational abstraction are involved with, and exploit, both prediction and its rather distant cousin, predictive coding. Both model-free and model-based methods are involved.


2019 ◽  
Author(s):  
Leor M Hackel ◽  
Jeffrey Jordan Berg ◽  
Björn Lindström ◽  
David Amodio

Do habits play a role in our social impressions? To investigate the contribution of habits to the formation of social attitudes, we examined the roles of model-free and model-based reinforcement learning in social interactions—computations linked in past work to habit and planning, respectively. Participants in this study learned about novel individuals in a sequential reinforcement learning paradigm, choosing financial advisors who led them to high- or low-paying stocks. Results indicated that participants relied on both model-based and model-free learning, such that each independently predicted choice during the learning task and self-reported liking in a post-task assessment. Specifically, participants liked advisors who could provide large future rewards as well as advisors who had provided them with large rewards in the past. Moreover, participants varied in their use of model-based and model-free learning strategies, and this individual difference influenced the way in which learning related to self-reported attitudes: among participants who relied more on model-free learning, model-free social learning related more to post-task attitudes. We discuss implications for attitudes, trait impressions, and social behavior, as well as the role of habits in a memory systems model of social cognition.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lieneke K. Janssen ◽  
Florian P. Mahner ◽  
Florian Schlagenhauf ◽  
Lorenz Deserno ◽  
Annette Horstmann

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Author(s):  
Javier Loranca ◽  
Jonathan Carlos Mayo Maldonado ◽  
Gerardo Escobar ◽  
Carlos Villarreal-Hernandez ◽  
Thabiso Maupong ◽  
...  

2021 ◽  
Vol 54 (5) ◽  
pp. 19-24
Author(s):  
Tyler Westenbroek ◽  
Ayush Agrawal ◽  
Fernando Castañeda ◽  
S Shankar Sastry ◽  
Koushil Sreenath

Sign in / Sign up

Export Citation Format

Share Document