scholarly journals Integrated World Modeling Theory (IWMT) Revisited

Author(s):  
Adam Safron

Here, I provide clarifications and discuss further issues relating to Safron (2020), “An Integrated World Modeling Theory (IWMT) of consciousness: Combining Integrated Information and Global Workspace Theories with the Free Energy Principle and Active Inference Framework; towards solving the Hard problem and characterizing agentic causation.” As a synthesis of major theories of complex systems and consciousness, with IWMT we may be able to address some of the most difficult problems in the sciences. This is a claim deserving of close scrutiny and much skepticism. What would it take to solve the Hard problem? One could answer the question of how it is possible that something like subjectivity could emerge from objective brain functioning (i.e., moving from a third person to a first person ontology), but a truly satisfying account might still require solving all the “easy” and “real” problems of consciousness. In this way, IWMT does not claim to definitively solve the Hard problem, as explaining all the particular ways that things feel across all relevant aspects of experience is likely an impossible task. Nonetheless, IWMT does claim to have made major inroads into our understanding of consciousness, and here I will attempt to justify this position by discussing challenging problems and outstanding questions with respect to philosophy, (neuro)phenomenology, computational principles, practical applications, and implications for existing theories of mind and life.

2021 ◽  
Author(s):  
Adam Safron

In this brief commentary on The Hidden Spring: A Journey to the Source of Consciousness, I describe ways in which Mark Solms’ account of the origins of subjective experience relates to Integrated World Modeling Theory (IWMT). IWMT is a synthetic theory that brings together different perspectives, with the ultimate goal of solving the enduring problems of consciousness, including the Hard problem. I describe points of compatibility and incompatibility between Solms’ proposal and IWMT, with particular emphasis on how a Bayesian interpretation of Integrated Information Theory and Global (Neuronal) Workspace Theory may help identify the physical and computational substrates of consciousness.


2020 ◽  
Author(s):  
Adam Safron

Integrated World Modeling Theory (IWMT) is a synthetic model that attempts to unify theories of consciousness within the Free Energy Principle and Active Inference framework, with particular emphasis on Integrated Information Theory (IIT) and Global Neuronal Workspace Theory (GNWT). IWMT further suggests predictive processing in sensory hierarchies may be well-modeled as (folded, sparse, partially disentangled) variational autoencoders, with beliefs discretely-updated via the formation of synchronous complexes—as self-organizing harmonic modes (SOHMs)—potentially entailing maximal a posteriori (MAP) estimation via turbo coding. In this account, alpha-synchronized SOHMs across posterior cortices may constitute the kinds of maximal complexes described by IIT, as well as samples (or MAP estimates) from multimodal shared latent space, organized according to egocentric reference frames, entailing phenomenal consciousness as mid-level perceptual inference. When these posterior SOHMs couple with frontal complexes, this may enable various forms of conscious access as a kind of mental act(ive inference), affording higher order cognition/control, including the kinds of attentional/intentional processing and reportability described by GNWT. Across this autoencoding heterarchy, intermediate-level beliefs may be organized into spatiotemporal trajectories by the entorhinal/hippocampal system, so affording episodic memory, counterfactual imaginings, and planning.


2019 ◽  
Author(s):  
Adam Safron

The Free Energy Principle and Active Inference Framework (FEP-AI) begins with the understanding that persisting systems must regulate environmental exchanges and prevent entropic accumulation. In FEP-AI, minds and brains are predictive controllers for autonomous systems, where action-driven perception is realized as probabilistic inference. Integrated Information Theory (IIT) begins with considering the preconditions for a system to intrinsically exist, as well as axioms regarding the nature of consciousness. IIT has produced controversy because of its surprising entailments: quasi-panpsychism; subjectivity without referents or dynamics; and the possibility of fully-intelligent-yet-unconscious brain simulations. Here, I describe how these controversies might be resolved by integrating IIT with FEP-AI, where integrated information only entails consciousness for systems with perspectival reference frames capable of generating models with spatial, temporal, and causal coherence for self and world. Without that connection with external reality, systems could have arbitrarily high amounts of integrated information, but nonetheless would not entail subjective experience. I further describe how an integration of these frameworks may contribute to their evolution as unified systems theories and models of emergent causation. Then, inspired by both Global Neuronal Workspace Theory (GNWT) and the Harmonic Brain Modes framework, I describe how streams of consciousness may emerge as an evolving generation of sensorimotor predictions, with the precise composition of experiences depending on the integration abilities of synchronous complexes as self-organizing harmonic modes (SOHMs). These integrating dynamics may be particularly likely to occur via richly connected subnetworks affording body-centric sources of phenomenal binding and executive control. Along these connectivity backbones, SOHMs are proposed to implement loopy message passing (cf. turbo-codes) over predictive (autoencoding) networks, so generating maximum a posteriori estimates as coherent vectors governing neural evolution, with alpha frequencies generating basic awareness, and cross-frequency phase-coupling within theta frequencies for access consciousness and volitional control. These dynamic cores of integrated information also function as global workspaces, centered on posterior cortices, but capable of being entrained with frontal cortices and interoceptive hierarchies, so affording agentic causation. Integrated World Modeling Theory (IWMT) represents a synthetic approach to understanding minds that reveals compatibility between leading theories of consciousness, so enabling inferential synergy.


2021 ◽  
Author(s):  
Adam Safron

Integrated World Modeling Theory (IWMT) is a synthetic theory of consciousness that uses the Free Energy Principle and Active Inference (FEP-AI) framework to combine insights from Integrated Information Theory (IIT) and Global Neuronal Workspace Theory (GNWT). Here, I first review philosophical principles and neural systems contributing to IWMT’s integrative perspective. I then go on to describe predictive processing models of brains and their connections to machine learning architectures, with particular emphasis on autoencoders (perceptual and active inference), turbo-codes (establishment of shared latent spaces for multi-modal integration and inferential synergy), and graph neural networks (spatial and somatic modeling and control). Particular emphasis is placed on the hippocampal/entorhinal system, which may provide a source of high-level reasoning via predictive contrasting and generalized navigation, so affording multiple kinds of conscious access. Future directions for IIT and GNWT are considered by exploring ways in which modules and workspaces may be evaluated as both complexes of integrated information and arenas for iterated Bayesian model selection. Based on these considerations, I suggest novel ways in which integrated information might be estimated using concepts from probabilistic graphical models, flow networks, and game theory. Mechanistic and computational principles are also considered with respect to the ongoing debate between IIT and GNWT regarding the physical substrates of different kinds of conscious and unconscious phenomena. I further explore how these ideas might relate to the “Bayesian blur problem”, or how it is that a seemingly discrete experience can be generated from probabilistic modeling, with some consideration of analogies from quantum mechanics as potentially revealing different varieties of inferential dynamics. Finally, I go on to describe parallels between FEP-AI and theories of universal intelligence, including with respect to implications for the future of artificially intelligent systems. Particular emphasis is given to recurrent computation and its relationships with feedforward processing, including potential means of addressing critiques of causal structure theories based on network unfolding, and the seeming absurdity of conscious expander graphs (without cybernetic symbol grounding). While not quite solving the Hard problem, this article expands on IWMT as a unifying model of consciousness and the potential future evolution of minds.


Author(s):  
Adam Safron

The Free Energy Principle and Active Inference Framework (FEP-AI) begins with the understanding that persisting systems must regulate environmental exchanges and prevent entropic accumulation. In FEP-AI, minds and brains are predictive controllers for autonomous systems, where action-driven perception is realized as probabilistic inference. Integrated Information Theory (IIT) begins with considering the preconditions for a system to intrinsically exist, as well as axioms regarding the nature of consciousness. IIT has produced controversy because of its surprising entailments: quasi-panpsychism; subjectivity without referents or dynamics; and the possibility of fully-intelligent-yet-unconscious brain simulations. Here, I describe how these controversies might be resolved by integrating IIT with FEP-AI, where integrated information only entails consciousness for systems with perspectival reference frames capable of generating models with spatial, temporal, and causal coherence for self and world. Without that connection with external reality, systems could have arbitrarily high amounts of integrated information, but nonetheless would not entail subjective experience. I further describe how an integration of these frameworks may contribute to their evolution as unified systems theories and models of emergent causation. Then, inspired by both Global Neuronal Workspace Theory (GNWT) and the Harmonic Brain Modes framework, I describe how streams of consciousness may emerge as an evolving generation of sensorimotor predictions, with the precise composition of experiences depending on the integration abilities of synchronous complexes as self-organizing harmonic modes (SOHMs). These integrating dynamics may be particularly likely to occur via richly connected subnetworks affording body-centric sources of phenomenal binding and executive control. Along these connectivity backbones, SOHMs are proposed to implement turbo coding via loopy message-passing over predictive (autoencoding) networks, thus generating maximum a posteriori estimates as coherent vectors governing neural evolution, with alpha frequencies generating basic awareness, and cross-frequency phase-coupling within theta frequencies for access consciousness and volitional control. These dynamic cores of integrated information also function as global workspaces, centered on posterior cortices, but capable of being entrained with frontal cortices and interoceptive hierarchies, thus affording agentic causation. Integrated World Modeling Theory (IWMT) represents a synthetic approach to understanding minds that reveals compatibility between leading theories of consciousness, thus enabling inferential synergy.


Author(s):  
Marcello Massimini ◽  
Giulio Tononi

This chapter uses thought experiments and practical examples to introduce, in a very accessible way, the hard problem of consciousness. Soon, machines may behave like us to pass the Turing test and scientists may succeed in copying and simulating the inner workings of the brain. Will all this take us any closer to solving the mysteries of consciousness? The reader is taken to meet different kind of zombies, the philosophical, the digital, and the inner ones, to understand why many, scientists and philosophers alike, doubt that the mind–body problem will ever be solved.


Sign in / Sign up

Export Citation Format

Share Document