scholarly journals Big-M-Small-N Temporal-Order Judgment Data

2021 ◽  
Author(s):  
Jan Tünnermann ◽  
Ingrid Scharlau

We present a large and precise data set of temporal-order judgments on visual stimuli.Stimulus asynchronies ranged from 0 to 80 ms in steps of 6.67 ms. The data setincludes an attention manipulation driven by one target’s orientation compared tobackground elements (either zero or 90 degrees). Each of 25 stimulus asynchronies wassampled with at least 196 repetitions (and more than 400 times in two participants).Furthermore, fixation, an important concern in studies on covert attention, wasmonitored. Precise data are helpful for answering theoretical questions in psychology.For some questions such as model comparisons, they may even be necessary. Threedifferent exemplary models are fitted to the data.

2021 ◽  
Vol 17 (4) ◽  
pp. 355-373
Author(s):  
Jan T{"{u}}nnermann ◽  
Ingrid Scharlau

2020 ◽  
Author(s):  
Vincent van de Ven ◽  
Moritz Jaeckels ◽  
Peter De Weerd

We tend to mentally segment a series of events according to perceptual contextual changes, such that items from a shared context are more strongly associated in memory than items from different contexts. It is also known that temporal context provides a scaffold to structure experiences in memory, but its role in event segmentation has not been investigated. We adapted a previous paradigm, which was used to investigate event segmentation using visual contexts, to study the effects of changes in temporal contexts on event segmentation in associative memory. We presented lists of items in which the inter-stimulus intervals (ISIs) ranged across lists between 0.5 and 4 s in 0.5 s steps. After each set of six lists, participants judged which one of two test items were shown first (temporal order judgment) for items that were either drawn from the same list or from consecutive lists. Further, participants judged from memory whether the ISI associated to an item lasted longer than a standard interval (2.25s) that was not previously shown. Results showed faster responses for temporal order judgments when items were drawn from the same context, as opposed to items drawn from different contexts. Further, we found that participants were well able to provide temporal duration judgments based on recalled durations. Finally, we found temporal acuity, as estimated by psychometric curve fitting parameters of the recalled durations, correlated inversely with within-list temporal order judgments. These findings show that changes in temporal context support event segmentation in associative memory.


Author(s):  
Jan Tünnermann ◽  
Ingrid Scharlau

Humans are incapable of judging the temporal order of visual events at brief temporal separations with perfect accuracy. Their performance---which is of much interest in visual cognition and attention research---can be measured with the temporal-order judgment task, which typically produces S-shaped psychometric functions. Occasionally, researchers reported plateaus within these functions, and some theories predict such deviation from the basic S shape. However, the centers of the psychometric functions result from the weakest performance at the most difficult presentations and therefore fluctuate strongly, leaving existence and exact shapes of plateaus unclear. This study set out to investigate whether plateaus disappear if the data accuracy is enhanced, or if we are ``stuck on a plateau'', or rather with it. For this purpose, highly accurate data were assessed by model-based analysis. The existence of plateaus is confidently confirmed and two plausible mechanisms derived from very different models are presented. Neither model, however, performs well in the presence of a strong attention manipulation, and model comparison remains unclear on the question which of the models describes the data best. Nevertheless, the present study includes the highest accuracy in visual TOJ data and the most explicit models of plateaus in TOJ studied so far.


Author(s):  
Jan Tünnermann ◽  
Ingrid Scharlau

Humans are incapable of judging the temporal order of visual events at brief temporal separations with perfect accuracy. Their performance---which is of much interest in visual cognition and attention research---can be measured with the temporal-order judgment task, which typically produces S-shaped psychometric functions. Occasionally, researchers reported plateaus within these functions, and some theories predict such deviation from the basic S shape. However, the centers of the psychometric functions result from the weakest performance at the most difficult presentations and therefore fluctuate strongly, leaving existence and exact shapes of plateaus unclear. This study set out to investigate whether plateaus disappear if the data accuracy is enhanced, or if we are ``stuck on a plateau'', or rather with it. For this purpose, highly accurate data were assessed by model-based analysis. The existence of plateaus is confidently confirmed and two plausible mechanisms derived from very different models are presented. Neither model, however, performs well in the presence of a strong attention manipulation, and model comparison remains unclear on the question which of the models describes the data best. Nevertheless, the present study includes the highest accuracy in visual TOJ data and the most explicit models of plateaus in TOJ studied so far.


Vision ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 29 ◽  
Author(s):  
Jan Tünnermann ◽  
Ingrid Scharlau

Humans are incapable of judging the temporal order of visual events at brief temporal separations with perfect accuracy. Their performance—which is of much interest in visual cognition and attention research—can be measured with the temporal-order judgment (TOJ) task, which typically produces S-shaped psychometric functions. Occasionally, researchers reported plateaus within these functions, and some theories predict such deviation from the basic S shape. However, the centers of the psychometric functions result from the weakest performance at the most difficult presentations and therefore fluctuate strongly, leaving the existence and exact shapes of plateaus unclear. This study set out to investigate whether plateaus disappear if the data accuracy is enhanced, or if we are “stuck on a plateau”, or rather with it. For this purpose, highly accurate data were assessed by model-based analysis. The existence of plateaus is confidently confirmed and two plausible mechanisms derived from very different models are presented. Neither model, however, performs well in the presence of a strong attention manipulation, and model comparison remains unclear on the question of which of the models describes the data best. Nevertheless, the present study includes the highest accuracy in visual TOJ data and the most explicit models of plateaus in TOJ studied so far.


Perception ◽  
2021 ◽  
Vol 50 (4) ◽  
pp. 294-307
Author(s):  
Louise Manfron ◽  
Camille Vanderclausen ◽  
Valéry Legrain

Localizing somatosensory stimuli is an important process, as it allows us to spatially guide our actions toward the object entering in contact with the body. Accordingly, the positions of tactile inputs are coded according to both somatotopic and spatiotopic representations, the latter one considering the position of the stimulated limbs in external space. The spatiotopic representation has often been evidenced by means of temporal order judgment (TOJ) tasks. Participants’ judgments about the order of appearance of two successive somatosensory stimuli are less accurate when the hands are crossed over the body midline than uncrossed but also when participants’ hands are placed close together when compared with farther away. Moreover, these postural effects might depend on the vision of the stimulated limbs. The aim of this study was to test the influence of seeing the hands, on the modulation of tactile TOJ by the spatial distance between the stimulated limbs. The results showed no influence of the distance between the stimulated hands on TOJ performance and prevent us from concluding whether vision of the hands affects TOJ performance, or whether these variables interact. The reliability of such distance effect to investigate the spatial representations of tactile inputs is questioned.


Perception ◽  
10.1068/p5293 ◽  
2005 ◽  
Vol 34 (3) ◽  
pp. 357-370 ◽  
Author(s):  
James C Craig

Subjects judged which one of two patterns, a visual or a tactile pattern, had been presented first. The visual and tactile displays were placed in close spatial proximity. The patterns appeared to move across their respective displays. Although irrelevant to the temporal order judgment (TOJ), the direction of motion of the patterns—the trajectory—affected the judgments. When the leading pattern was moving towards the trailing pattern (consistent movement), subjects tended to judge it, correctly, as leading. When the leading pattern was moving away from the trailing pattern (inconsistent movement), subjects tended to judge it, incorrectly, as trailing. Changing the spatial position of the arrays such that the pattern trajectories were no longer towards one another eliminated the effect of movement on TOJs. Although there was a substantial difference in performance on consistent and inconsistent trials, there were no differences in subjects' ratings of their performances. The results demonstrate that the trajectory effect can be obtained multimodally. The issues whether the effect of motion alters the perceived temporal separation between the visual and tactile patterns, and whether the visual and tactile patterns are represented by a common framework, are discussed.


Author(s):  
Agnieszka M. Fecica ◽  
Jennifer A. Stolz

Abstract. The influence of facial affect on the perception of temporal order was examined in the context of the temporal order judgment (TOJ) paradigm. Two schematic faces were presented either simultaneously, or separated by varying stimulus onset asynchronies (SOAs; -100 ms, -34 ms, -17 ms, 17 ms, 34 ms, 100 ms), and participants had to judge which face appeared first. Each schematic face displayed one of three emotions; happy, neutral, or angry. Facial affect was found to influence judgments of temporal order at short SOAs (-17 ms, 0 ms, and 17 ms) but not at the longest SOAs (-100 ms and 100 ms), consistent with the hypothesis that facial affect influences relative onset judgments when they are difficult to make.


Author(s):  
Vincent van de Ven ◽  
Moritz Jäckels ◽  
Peter De Weerd

AbstractWe tend to mentally segment a series of events according to perceptual contextual changes, such that items from a shared context are more strongly associated in memory than items from different contexts. It is also known that timing context provides a scaffold to structure experiences in memory, but its role in event segmentation has not been investigated. We adapted a previous paradigm, which was used to investigate event segmentation using visual contexts, to study the effects of changes in timing contexts on event segmentation in associative memory. In two experiments, we presented lists of 36 items in which the interstimulus intervals (ISIs) changed after a series of six items ranging between 0.5 and 4 s in 0.5 s steps. After each list, participants judged which one of two test items were shown first (temporal order judgment) for items that were either drawn from the same context (within an ISI) or from consecutive contexts (across ISIs). Further, participants judged from memory whether the ISI associated to an item lasted longer than a standard interval (2.25 s) that was not previously shown (temporal source memory). Experiment 2 further included a time-item encoding task. Results revealed an effect of timing context changes in temporal order judgments, with faster responses (Experiment 1) or higher accuracy (Experiment 2) when items were drawn from the same context, as opposed to items drawn from across contexts. Further, in both experiments, we found that participants were well able to provide temporal source memory judgments based on recalled durations. Finally, replicated across experiments, we found subjective duration bias, as estimated by psychometric curve fitting parameters of the recalled durations, correlated negatively with within-context temporal order judgments. These findings show that changes in timing context support event segmentation in associative memory.


Sign in / Sign up

Export Citation Format

Share Document