scholarly journals Systemic Effects of Selection History on Learned Ignoring

2021 ◽  
Author(s):  
Andy Jeesu Kim ◽  
Brian A. Anderson

Despite our best intentions, physically salient but entirely task-irrelevant stimuli can sometimes capture our attention. With learning, it is possible to more efficiently ignore such stimuli, although specifically how the visual system accomplishes this remains to be clarified. Using a sample of young-adult participants, we examined the time course of eye movements to targets and distractors. We replicate a reduced frequency of eye movements to the distractor when appearing in a location at which distractors are frequently encountered. This reduction was observed even for the earliest saccades, when selection tends to be most stimulus-driven. When the distractor appeared at the high-probability location, saccadic reaction time was slowed specifically for distractor-going saccades, suggesting a slowing of priority accumulation at this location. In the event that the distractor was fixated, disengagement from the distractor was also faster when it appeared in the high-probability location. Both proactive and reactive mechanisms of distractor suppression work together to minimize attentional capture by frequently-encountered distractors.

2019 ◽  
Vol 72 (7) ◽  
pp. 1863-1875 ◽  
Author(s):  
Martin R Vasilev ◽  
Fabrice BR Parmentier ◽  
Bernhard Angele ◽  
Julie A Kirkby

Oddball studies have shown that sounds unexpectedly deviating from an otherwise repeated sequence capture attention away from the task at hand. While such distraction is typically regarded as potentially important in everyday life, previous work has so far not examined how deviant sounds affect performance on more complex daily tasks. In this study, we developed a new method to examine whether deviant sounds can disrupt reading performance by recording participants’ eye movements. Participants read single sentences in silence and while listening to task-irrelevant sounds. In the latter condition, a 50-ms sound was played contingent on the fixation of five target words in the sentence. On most occasions, the same tone was presented (standard sound), whereas on rare and unexpected occasions it was replaced by white noise (deviant sound). The deviant sound resulted in significantly longer fixation durations on the target words relative to the standard sound. A time-course analysis showed that the deviant sound began to affect fixation durations around 180 ms after fixation onset. Furthermore, deviance distraction was not modulated by the lexical frequency of target words. In summary, fixation durations on the target words were longer immediately after the presentation of the deviant sound, but there was no evidence that it interfered with the lexical processing of these words. The present results are in line with the recent proposition that deviant sounds yield a temporary motor suppression and suggest that deviant sounds likely inhibit the programming of the next saccade.


2016 ◽  
Vol 49 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Steven P. Kurtz ◽  
Mance E. Buttram ◽  
Hilary L. Surratt

2020 ◽  
Vol 63 (11) ◽  
pp. 3611-3627
Author(s):  
Chen Shen ◽  
Esther Janse

Purpose This study investigated whether maximum speech performance, more specifically, the ability to rapidly alternate between similar syllables during speech production, is associated with executive control abilities in a nonclinical young adult population. Method Seventy-eight young adult participants completed two speech tasks, both operationalized as maximum performance tasks, to index their articulatory control: a diadochokinetic (DDK) task with nonword and real-word syllable sequences and a tongue-twister task. Additionally, participants completed three cognitive tasks, each covering one element of executive control (a Flanker interference task to index inhibitory control, a letter–number switching task to index cognitive switching, and an operation span task to index updating of working memory). Linear mixed-effects models were fitted to investigate how well maximum speech performance measures can be predicted by elements of executive control. Results Participants' cognitive switching ability was associated with their accuracy in both the DDK and tongue-twister speech tasks. Additionally, nonword DDK accuracy was more strongly associated with executive control than real-word DDK accuracy (which has to be interpreted with caution). None of the executive control abilities related to the maximum rates at which participants performed the two speech tasks. Conclusion These results underscore the association between maximum speech performance and executive control (cognitive switching in particular).


1991 ◽  
Vol 1 (2) ◽  
pp. 161-170
Author(s):  
Jean-Louis Vercher ◽  
Gabriel M. Gauthier

To maintain clear vision, the images on the retina must remain reasonably stable. Head movements are generally dealt with successfully by counter-rotation of the eyes induced by the combined actions of the vestibulo-ocular reflex (VOR) and the optokinetic reflex. A problem of importance relates to the value of the so-called intrinsic gain of the VOR (VORG) in man, and how this gain is modulated to provide appropriate eye movements. We have studied these problems in two situations: 1. fixation of a stationary object of the visual space while the head moves; 2. fixation of an object moving with the head. These two situations were compared to a basic condition in which no visual target was allowed in order to induce “pure” VOR. Eye movements were recorded in seated subjects during stationary sinusoidal and transient rotations around the vertical axis. Subjects were in total darkness (DARK condition) and involved in mental arithmetic. Alternatively, they were provided with a small foveal target, either fixed with respect to earth (earth-fixed target: EFT condition), or moving with them (chair-fixed-target: CFT condition). The stationary rotation experiment was used as baseline for the ensuing experiment and yielded control data in agreement with the literature. In all 3 visual conditions, typical responses to transient rotations were rigorously identical during the first 200 ms. They showed, sequentially, a 16-ms delay of the eye behind the head and a rapid increase in eye velocity during 75 to 80 ms, after which the average VORG was 0.9 ± 0.15. During the following 50 to 100 ms, the gain remained around 0.9 in all three conditions. Beyond 200 ms, the VORG remained around 0.9 in DARK and increased slowly towards 1 or decreased towards zero in the EFT and CFT conditions, respectively. The time-course of the later events suggests that visual tracking mechanisms came into play to reduce retinal slip through smooth pursuit, and position error through saccades. Our data also show that in total darkness VORG is set to 0.9 in man. Lower values reported in the literature essentially reflect predictive properties of the vestibulo-ocular mechanism, particularly evident when the input signal is a sinewave.


Sign in / Sign up

Export Citation Format

Share Document