scholarly journals Dust Properties of Two New Cavity Structures Nearby Asymptotic Giant Branch Stars: The IRAS Survey

2021 ◽  
Vol 26 (2) ◽  
pp. 119-126
Author(s):  
Sujan Prasad Gautam ◽  
Ashok Silwal ◽  
Mijas Tiwari ◽  
Seema Subedi ◽  
Manish Khanal ◽  
...  

We studied the dust properties of two cavity structures (namely FIC21+54 and FIC16-56) nearby Asymptotic Giant Branch stars using Infrared Astronomical Satellite (IRAS) maps. Dust color temperature, Planck function, dust mass, and visual extinction with their distribution within the region of interest were examined. The temperature of dust was found to lie in the range of 22.24 ± 0.81 K to 23.27 ± 0.21 K, and 25.12 ± 0.43 K to 26.17 ± 0.62 K, and the mass of dust was obtained within the range of 4.21 × 1026 kg to 3.6 × 1027 kg, and 2.1 × 1027 kg to 3.31 × 1028 kg, for FIC21+54 and FIC16-56, respectively. Some unusual behaviors on the distribution of dust temperature indicated the effect of nearby sources within the studied structures. Moreover, we observed the trend of dust particles along the major and minor diameters, and plots represented that the particles were oscillating with a sinusoidal pattern in both cavities. The negative slope between 25 µm and 60 µm in far-infrared spectral distribution was encountered for both structures, which portrayed less number density of particles in 60 µm band; interaction between AGB wind and the ambient interstellar medium could be the possible reason behind this. These findings support the prior results for two new cavity structures nearby AGB stars within the galactic plane -10° < b < +10°.

2020 ◽  
Vol 6 (1) ◽  
pp. 97-104
Author(s):  
A. K. Gautam

We present dust color temperature, Planck function and visual extinction distributions of a far infrared cavity FIC19+30 found to be located around post-AGB star namely AGB20+29 at the galactic plane. Minimum and maximum dust color temperature of the core region of the cavity was found to be (22.17±0.23) K and (22.41±0.29) K respectively with offset value 0.24 K which suggests that the cavity is isolated and stable. The product of dust color temperature and visual extinction was found to be in the order of 10-4 K mag. The distribution of Planck function along the extension (major diameter) and compression (minor diameter) was found to be non-uniform distribution. Specifically dust particles are oscillating in order to get dynamical equilibrium which may be the cause of grain temperature. It further suggests that the dust particles in the cavities might not be in the thermal equilibrium possibly due to pressure driven events of nearby AGB stars. There is continuous increase in flux density with increase in wavelength as in case of nebula which suggests that number density of dust particles increase according to the increase in wavelength and vice-versa.


2020 ◽  
pp. 60-71
Author(s):  
M. Tiwari ◽  
S.P. Gautam ◽  
A. Silwal ◽  
S. Subedi ◽  
A. Paudel ◽  
...  

The physical properties such as dust color temperature, dust mass, visual extinction, and Planck function with their distribution in the core region of two far-infrared cavities, namely FIC16-37 (size ~ 4.79 pc x 3.06 pc) located at R.A. (J2000): 16h 33m 57.25s & Dec. (J2000): -37d 47m 04.3s, and FIC12-58 (size ~ 22.54 pc x 14.84 pc) located at R.A. (J2000): 12h 52m 50.08s & Dec. (J2000): -58d 08m 55.02s, found within a galactic plane -10o  to +10o  nearby Asymptotic Giant Branch (AGB) stars namely AGB15-38 (R.A. (J2000): 15h 37m 40.74s & Dec. (J2000): -38d 20m 24.6s), and AGB12-57 (R.A (J2000): 12h 56m 38.50s & Dec. (J2000): -57d 54m 34.70s), respectively were studied using Infrared Astronomical Satellite (IRAS) survey. The dust color temperature was found to lie in the range of 23.95 ± 0.25 K to 23.44 ± 0.27 K with an offset about 0.5 K for FIC16-37, and 24.88 ± 0.27 K to 23.63 ± 0.98 K with an offset about 1 K for FIC12-58. The low offset in the dust color temperature indicated the symmetric distribution of density and temperature. The total mass of the cavities FIC16-37 and FIC12-58 were found to be 0.053 M☉ and 0.78 M☉, respectively. The contour plots of mass distribution of both of the cavities was found to follow the cosmological principle, suggesting the homogeneous and isotropic distribution of dust masses. The plot between temperature and visual extinction showed a negative correlation, suggesting that higher temperature has lower visual extinction and vice-versa. The distribution of Planck function along major and minor diameters of both of the cavities was found to be non-uniform, indicating oscillation of dust particles to get dynamical equilibrium. It further suggested the role of pressure-driven events nearby both cavities and suggested that dust particles are not in thermal equilibrium along the diameters.


BIBECHANA ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 154-163
Author(s):  
Devendra Raj Upadhyay ◽  
Trishna Subedi

Interstellar dust properties using far-infrared bands analyze nature around asymptotic giant branch stars and stellar objects. Here, we present physical properties around the cavity region across an AGB star named IRAS 04427+4951 Sky View Observatory of IRIS, AKARI map, SIMBAD, Aladin v2.5, and Gaia Archive. The average color temperature and mass are 23.48 ± 0.009 K, 3.55×1027 kg (1.79× 10-3 Mʘ ) in IRIS data and 14.89 ± 0.004 K and 5.34×1028 kg (2.69 × 10-2 Mʘ ) from AKARI data. The size of isolated cavity-like structure around the AGB stars of 45.67 pc × 17.02 pc and 42.25 pc × 17.76 pc, respectively. The visual extinction is to be in the range of 3.2×10-4 to 4.3×10-4 mag in and 4.5 × 10-3 to 7.4×10-3 mag. The inclination angle is 86.150 and 93.920. The method and results we present developed can for the study of astrochemistry of interstellar medium. BIBECHANA 18 (2) (2021) 154-163


2018 ◽  
Vol 14 (S343) ◽  
pp. 525-526 ◽  
Author(s):  
Devendra Raj Upadhyay ◽  
Lochan Khanal ◽  
Priyanka Hamal ◽  
Binil Aryal

AbstractThis paper presents mass, temperature profile, and the variation of Planck’s function in different regions around asymptotic giant branch (AGB) stars. The physics of the interstellar medium (ISM) is extremely complex because the medium is very inhomogeneous and is made of regions with fairly diverse physical conditions. We studied the dust environment such as flux, temperature, mass, and inclination angle of the cavity structure around C-rich asymptotic giant branch stars in 60 μm and 100 μm wavelengths band using Infrared Astronomical Survey. We observed the data of AGB stars named IRAS 01142+6306 and IRAS 04369+4501. Flexible image transport system image was downloaded from Sky View Observatory; we obtained the surrounding flux density using software Aladin v2.5. The average dust color temperature and mass are found to be 25.08 K, 23.20 K and 4.73 × ;1026 kg (0.00024 M⊙), 2.58 × 1028 kg (0.013 M⊙), respectively. The dust color temperature ranges from 18.76 K ± 3.16 K to 33.21K ± K and 22.84 K ± 0.18 K to 24.48 K ± 0.63 K. The isolated cavity like structure around the AGB stars has an extension of 45.67 pc × 17.02 pc and 42.25 pc × 17.76 pc, respectively. The core region is found to be edge-on having an inclination angle of 79.46° and 73.99°, respectively.


2021 ◽  
Author(s):  
Sujan Prasad Gautam ◽  
Ashok Silwal ◽  
Manish Khanal ◽  
Ajay Kumar Jha

Abstract This study performed an investigation of a dust environment, in the far-infrared bands (60 and 100 µm) of Infrared Astronomical Satellite (IRAS) survey, using the Sky View Virtual Observatory (https://skyview.gsfc.nasa.gov/current/). A far-infrared cavity structure (depression in the far-infrared background emission) of major diameter ∼ 61.8 pc and minor diameter ∼ 46.5 pc, in the sky coordinate, R.A. (J2000) = 21h 32m 44.47s and Dec. (J2000) = +55d 15m 16.8s, at a distance ∼ 3.58 kpc was found to lie around a carbon-rich Asymptotic Giant Branch star. We studied the temperature and mass of the dust, radiation intensity distribution, visual extinction, and far-infrared spectral distribution of the cavity structure using the softwares Aladin v2.5, SalsaJ, and ORIGIN 8.5. The range of temperature of dust was observed between 22.24 ± 0.81 K to 23.27 ± 0.21 K, and the entire mass of the cavity was determined to be 2.19 × 1031 kg. In addition, the fluctuating nature of the dust color temperature and Planck function was observed along major and minor diameters of the structure. Moreover, an opposite relationship of dust color temperature and visual extinction was found within the structure. Finally, from the far-infrared spectral distribution, abrupt reduction at 60 µm flux rather than a continual increase was observed, the connection between the AGB wind and the ambient interstellar medium could be the possible reason behind this. Our results obey the similar trends obtained for the other cavity structures in the previous studies; these findings validate the existing results for a new cavity structure around AGB star within the galactic coordinate -6o < b < +6o.


2009 ◽  
Vol 5 (H15) ◽  
pp. 813-813
Author(s):  
N. J. Wright ◽  
M. J. Barlow ◽  
R. Greimel ◽  
J. E. Drew ◽  
M. Matsuura

AbstractWe present a photometric analysis of the properties of asymptotic giant branch stars identified in the INT Photometric H-alpha Survey (IPHAS) of the northern Galactic plane. Follow-up spectroscopy has revealed that the IPHAS (r - Ha) colour is a valuable diagnostic of the photospheric C/O ratio, and may be used to identify hundreds of carbon and S-type stars.


2020 ◽  
Vol 1643 (1) ◽  
pp. 012043
Author(s):  
J. Balibrea-Correa ◽  
G. F. Ciani ◽  
L. Csedreki ◽  
A. Best ◽  
A. Formicola ◽  
...  

Abstract The main neutron source for the slow neutron capture process in low mass Asymptotic Giant Branch stars is the 13C(α,n)16O reaction. This reaction is responsible for the production of half of the natural heavy elements in the Universe. Up to now, no direct measurements have reached the energy region of interest for astrophysics, the so called Gamow window, which lies between 140 and 230 keV in the center of mass. In this paper we describe the experiment carried out at the LUNA experiment at the Laboratori Nazionali del Gran Sasso and present first preliminary results.


1997 ◽  
Vol 476 (1) ◽  
pp. 319-326 ◽  
Author(s):  
K. Justtanont ◽  
A. G. G. M. Tielens ◽  
C. J. Skinner ◽  
Michael R. Haas

2020 ◽  
Vol 501 (1) ◽  
pp. 933-947
Author(s):  
Javiera Parada ◽  
Jeremy Heyl ◽  
Harvey Richer ◽  
Paul Ripoche ◽  
Laurie Rousseau-Nepton

ABSTRACT We introduce a new distance determination method using carbon-rich asymptotic giant branch stars (CS) as standard candles and the Large and Small Magellanic Clouds (LMC and SMC) as the fundamental calibrators. We select the samples of CS from the ((J − Ks)0, J0) colour–magnitude diagrams, as, in this combination of filters, CS are bright and easy to identify. We fit the CS J-band luminosity functions using a Lorentzian distribution modified to allow the distribution to be asymmetric. We use the parameters of the best-fitting distribution to determine if the CS luminosity function of a given galaxy resembles that of the LMC or SMC. Based on this resemblance, we use either the LMC or SMC as the calibrator and estimate the distance to the given galaxy using the median J magnitude ($\overline{J}$) of the CS samples. We apply this new method to the two Local Group galaxies NGC 6822 and IC 1613. We find that NGC 6822 has an ‘LMC-like’ CS luminosity function, while IC 1613 is more ‘SMC-like’. Using the values for the median absolute J magnitude for the LMC and SMC found in Paper I we find a distance modulus of μ0 = 23.54 ± 0.03 (stat) for NGC 6822 and μ0 = 24.34 ± 0.05 (stat) for IC 1613.


Sign in / Sign up

Export Citation Format

Share Document