scholarly journals Optimal Methods for Finding Simple and Multiple Roots of Nonlinear Equations and their Basins of Attraction

2020 ◽  
Vol 37 (1-2) ◽  
pp. 14-29
Author(s):  
Prem Bahadur Chand

In this paper, using the variant of Frontini-Sormani method, some higher order methods for finding the roots (simple and multiple) of nonlinear equations are proposed. In particular, we have constructed an optimal fourth order method and a family of sixth order method for finding a simple root. Further, an optimal fourth order method for finding a multiple root of a nonlinear equation is also proposed. We have used different weight functions to a cubically convergent For ntini-Sormani method for the construction of these methods. The proposed methods are tested on numerical examples and compare the results with some existing methods. Further, we have presented the basins of attraction of these methods to understand their dynamics visually.

Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 942 ◽  
Author(s):  
Prem B. Chand ◽  
Francisco I. Chicharro ◽  
Neus Garrido ◽  
Pankaj Jain

In this paper, using the idea of weight functions on the Potra–Pták method, an optimal fourth order method, a non optimal sixth order method, and a family of optimal eighth order methods are proposed. These methods are tested on some numerical examples, and the results are compared with some known methods of the corresponding order. It is proved that the results obtained from the proposed methods are compatible with other methods. The proposed methods are tested on some problems related to engineering and science. Furthermore, applying these methods on quadratic and cubic polynomials, their stability is analyzed by means of their basins of attraction.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
J. P. Jaiswal

The object of the present work is to give the new class of third- and fourth-order iterative methods for solving nonlinear equations. Our proposed third-order method includes methods of Weerakoon and Fernando (2000), Homeier (2005), and Chun and Kim (2010) as particular cases. The multivariate extension of some of these methods has been also deliberated. Finally, some numerical examples are given to illustrate the performances of our proposed methods by comparing them with some well existing third- and fourth-order methods. The efficiency of our proposed fourth-order method over some fourth-order methods is also confirmed by basins of attraction.


2019 ◽  
Vol 13 (2) ◽  
pp. 399-422
Author(s):  
Miodrag Petkovic ◽  
Ljiljana Petkovic ◽  
Beny Neta

Generalized Halley-like one-parameter families of order three and four for finding multiple root of a nonlinear equation are constructed and studied. This presentation is, actually, a mixture of theoretical results, algorithmic aspects, numerical experiments, and computer graphics. Starting from the proposed class of third order methods and using an accelerating procedure, we construct a new fourth order family of Halley's type. To analyze convergence behavior of two presented families, we have used two methodologies: (i) testing by numerical examples and (ii) dynamic study using basins of attraction.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1494
Author(s):  
Deepak Kumar ◽  
Janak Raj Sharma ◽  
Lorentz Jăntschi

We propose a novel family of seventh-order iterative methods for computing multiple zeros of a nonlinear function. The algorithm consists of three steps, of which the first two are the steps of recently developed Liu–Zhou fourth-order method, whereas the third step is based on a Newton-like step. The efficiency index of the proposed scheme is 1.627, which is better than the efficiency index 1.587 of the basic Liu–Zhou fourth-order method. In this sense, the proposed iteration is the modification over the Liu–Zhou iteration. Theoretical results are fully studied including the main theorem of local convergence analysis. Moreover, convergence domains are also assessed using the graphical tool, namely, basins of attraction which are symmetrical through the fractal like boundaries. Accuracy and computational efficiency are demonstrated by implementing the algorithms on different numerical problems. Comparison of numerical experiments shows that the new methods have an edge over the existing methods.


2015 ◽  
Vol 34 (2) ◽  
pp. 197-211
Author(s):  
D. Sbibih ◽  
Abdelhafid Serghini ◽  
A. Tijini ◽  
A. Zidna

In this paper, we describe an iterative method for approximating asimple zero $z$ of a real defined function. This method is aessentially based on the idea to extend Newton's method to be theinverse quadratic interpolation. We prove that for a sufficientlysmooth function $f$ in a neighborhood of $z$ the order of theconvergence is quartic. Using Mathematica with its high precisioncompatibility, we present some numerical examples to confirm thetheoretical results and to compare our method with the others givenin the literature.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Gustavo Fernández-Torres ◽  
Juan Vásquez-Aquino

We present new modifications to Newton's method for solving nonlinear equations. The analysis of convergence shows that these methods have fourth-order convergence. Each of the three methods uses three functional evaluations. Thus, according to Kung-Traub's conjecture, these are optimal methods. With the previous ideas, we extend the analysis to functions with multiple roots. Several numerical examples are given to illustrate that the presented methods have better performance compared with Newton's classical method and other methods of fourth-order convergence recently published.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Young Ik Kim ◽  
Young Hee Geum

We construct a biparametric family of fourth-order iterative methods to compute multiple roots of nonlinear equations. This method is verified to be optimally convergent. Various nonlinear equations confirm our proposed method with order of convergence of four and show that the computed asymptotic error constant agrees with the theoretical one.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1020
Author(s):  
Syahmi Afandi Sariman ◽  
Ishak Hashim ◽  
Faieza Samat ◽  
Mohammed Alshbool

In this study, we propose an extension of the modified Newton-Househölder methods to find multiple roots with unknown multiplicity of nonlinear equations. With four functional evaluations per iteration, the proposed method achieves an optimal eighth order of convergence. The higher the convergence order, the quicker we get to the root with a high accuracy. The numerical examples have shown that this scheme can compete with the existing methods. This scheme is also stable across all of the functions tested based on the graphical basins of attraction.


Sign in / Sign up

Export Citation Format

Share Document