scholarly journals (In)tangible Arguments about Play, Creativity, and the Political Economy of 3D Printing: The Free Universal Construction Kit

Author(s):  
Jan Løhmann Stephensen ◽  
Lone Koefoed Hansen

With the increasing economic accessibility of 3D printers, the lessons learned and the logics cultivated on digital Web 2.0 now seem applicable to the world of material things. Released in early 2012 by the artist groups F.A.T. and Sy-lab, the Free Universal Construction Kit is a set of 3D drawings that enable everyone with access to a 3D printer to make connectors between intellectual property restricted toys like LEGO, Tinkertoys, and Fischertechnik. However, when describing this project as “reverse engineering as a civic activity”, it becomes obvious that the Kit’s greater agenda is not just to enable cross-over playing, but rather, to problematize and perhaps ultimately open up closed formats through critical appropriation. But how does that, for instance, conform with the fact that the connectors are parasitically attached to these toys, whose logic it is simultaneously defying? And which (implicit) notions of creativity and play are at stake in this project, and to what extent do they fit the more general philosophical underpinnings of this project?

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2545
Author(s):  
Marcin Hoffmann ◽  
Krzysztof Żarkiewicz ◽  
Adam Zieliński ◽  
Szymon Skibicki ◽  
Łukasz Marchewka

Foundation piles that are made by concrete 3D printers constitute a new alternative way of founding buildings constructed using incremental technology. We are currently observing very rapid development of incremental technology for the construction industry. The systems that are used for 3D printing with the application of construction materials make it possible to form permanent formwork for strip foundations, construct load-bearing walls and partition walls, and prefabricate elements, such as stairs, lintels, and ceilings. 3D printing systems do not offer soil reinforcement by making piles. The paper presents the possibility of making concrete foundation piles in laboratory conditions using a concrete 3D printer. The paper shows the tools and procedure for pile pumping. An experiment for measuring pile bearing capacity is described and an example of a pile deployment model under a foundation is described. The results of the tests and analytical calculations have shown that the displacement piles demonstrate less settlement when compared to the analysed shallow foundation. The authors indicate that it is possible to replace the shallow foundation with a series of piles combined with a printed wall without locally widening it. This type of foundation can be used for the foundation of low-rise buildings, such as detached houses. Estimated calculations have shown that the possibility of making foundation piles by a 3D printer will reduce the cost of making foundations by shortening the time of execution of works and reducing the consumption of construction materials.


1996 ◽  
Vol 75 (4) ◽  
pp. 140
Author(s):  
Richard N. Cooper ◽  
Bernard Hoekman ◽  
Michel Kostecki

Author(s):  
Verma Walker, MLIS

Three-dimensional (3D) printing is opening new opportunities in biomedicine by enabling creative problem solving, faster prototyping of ideas, advances in tissue engineering, and customized patient solutions. The National Institutes of Health (NIH) Library purchased a Makerbot Replicator 2 3D printer to give scientists a chance to try out this technology. To launch the service, the library offered training, conducted a survey on service model preferences, and tracked usage and class attendance. 3D printing was very popular, with new lab equipment prototypes being the most common model type. Most survey respondents indicated they would use the service again and be willing to pay for models. There was high interest in training for 3D modeling, which has a steep learning curve. 3D printers also require significant care and repairs. NIH scientists are using 3D printing to improve their research, and it is opening new avenues for problem solving in labs. Several scientists found the 3D printer so helpful they bought one for their labs. Having a printer in a central and open location like a library can help scientists, doctors, and students learn how to use this technology in their work.


Author(s):  
Daniel A. Tillman ◽  
Ross C. Teller ◽  
Paul E. Perez ◽  
Song A. An

This chapter examines the theories, strategies, and techniques for employing 3D printing technologies to fabricate education-appropriate augmented reality (AR) headsets and provides a concrete example of an AR headset that the authors developed. The chapter begins by discussing theories and historically relevant events that provide a context for the chapter's narrative about use of 3D printers to support AR in education. Next, the chapter presents the strategies that were employed while developing and 3D fabricating a custom-designed AR headset that was intended for supporting middle school students learning science and mathematics content knowledge. Afterward, the chapter provides directions and resources for the reader describing how to build the presented AR headset design themselves by using a 3D printer and affordable electronic components, as well as information about how to join the Maker community and participate in the designing and producing of similar projects. Lastly, the chapter delivers a summarization of all findings discussed.


Sign in / Sign up

Export Citation Format

Share Document