scholarly journals Heat pulse measurement techniques for soil water flux, soil water content, and soil volumetric heat capacity

2003 ◽  
Author(s):  
Tyson Edward Ochsner
2003 ◽  
Vol 2 (3) ◽  
pp. 389
Author(s):  
J. M. Basinger ◽  
G. J. Kluitenberg ◽  
J. M. Ham ◽  
J. M. Frank ◽  
P. L. Barnes ◽  
...  

2009 ◽  
Vol 6 (3) ◽  
pp. 4265-4306 ◽  
Author(s):  
K. Verbist ◽  
W. M. Cornelis ◽  
D. Gabriels ◽  
K. Alaerts ◽  
G. Soto

Abstract. In arid and semi-arid zones runoff harvesting techniques are often applied to increase the water retention and infiltration on steep slopes. Additionally, they act as an erosion control measure to reduce land degradation hazards. Nevertheless, few efforts were observed to quantify the water harvesting processes of these techniques and to evaluate their efficiency. In this study a combination of detailed field measurements and modelling with the HYDRUS-2D software package was used to visualize the effect of an infiltration trench on the soil water content of a bare slope in Northern Chile. Rainfall simulations were combined with high spatial and temporal resolution water content monitoring in order to construct a useful dataset for inverse modelling purposes. Initial estimates of model parameters were provided by detailed infiltration and soil water retention measurements. Four different measurement techniques were used to determine the saturated hydraulic conductivity (Ksat) independently. Tension infiltrometer measurements proved a good estimator of the Ksat value and a proxy for those measured under simulated rainfall, whereas the pressure and constant head well infiltrometer measurements showed larger variability. Six different parameter optimization functions were tested as a combination of soil-water content, water retention and cumulative infiltration data. Infiltration data alone proved insufficient to obtain high model accuracy, due to large scatter on the data set, and water content data were needed to obtain optimized effective parameter sets with small confidence intervals. Correlation between observed soil water content and simulated values was as high as R2=0.93 for ten selected observation points used in the model calibration phase, with overall correlation for the 22 observation points equal to 0.85. Model results indicate that the infiltration trench has a significant effect on soil water storage, especially at the base of the trench.


2003 ◽  
Vol 67 (6) ◽  
pp. 1631-1634 ◽  
Author(s):  
T. Ren ◽  
T. E. Ochsner ◽  
R. Horton ◽  
Z. Ju

2016 ◽  
Vol 15 (7) ◽  
pp. vzj2016.01.0004 ◽  
Author(s):  
Min Li ◽  
Bing Cheng Si ◽  
Wei Hu ◽  
Miles Dyck

1998 ◽  
Vol 123 (5) ◽  
pp. 937-941 ◽  
Author(s):  
Y. Song ◽  
J.M. Ham ◽  
M.B. Kirkham ◽  
G.J. Kluitenberg

Measurements of soil water content near the soil surface often are required for efficient turfgrass water management. Experiments were conducted in a greenhouse to determine if the dual-probe heat-pulse (DPHP) technique can be used to monitor changes in soil volumetric water content (θv) and turfgrass water use. `Kentucky 31' Tall fescue (Festuca arundinacea Schreb.) was planted in 20-cm-diameter containers packed with Haynie sandy loam (coarse-silty, mixed, calcareous, mesic Typic Udifluvents). Water content was measured with the DPHP sensors that were placed horizontally at different depths between 1.5 and 14.4 cm from the surface in the soil column. Water content also was monitored gravimetrically from changes in container mass. Measurements started when the soil surface was covered completely by tall fescue. Hence, changes in θv could be attributed entirely to water being taken up by roots of tall fescue. Daily measurements were taken over multiple 6- or 7-day drying cycles. Each drying cycle was preceded by an irrigation, and free drainage had ceased before measurements were initiated. Soil water content dropped from ≈0.35 to 0.10 m3·m-3 during each drying cycle. Correlation was excellent between θv and changes in water content determined by the DPHP and gravimetric methods. Comparisons with the gravimetric method showed that the DPHP sensors could measure average container θv within 0.03 m3·m-3 and changes in soil water content within 0.01 m3·m-3.


Sign in / Sign up

Export Citation Format

Share Document