scholarly journals Numerical computation of the hypersonic rarefied flow past the sharp leading edge of a flat plate

1972 ◽  
Author(s):  
Robert Allan Mohling
Author(s):  
M J Crompton ◽  
R V Barrett

Detailed measurements of the separation bubble formed behind the sharp leading edge of a flat plate at low speeds and incidence are reported. The Reynolds number based on chord length ranged from 0.1 × 105 to 5.5 × 105. Extensive use of laser Doppler anemometry allowed detailed velocity measurements throughout the bubble. The particular advantages of laser Doppler anemometry in this application were its ability to define flow direction without ambiguity and its non-intrusiveness. It allowed the mean reattachment point to be accurately determined. The static pressure distribution along the plate was also measured. The length of the separation bubble was primarily determined by the plate incidence, although small variations occurred with Reynolds number because of its influence on the rate of entrainment and growth of the shear layer. Above about 105, the Reynolds number effect was no longer evident. The reverse flow boundary layer in the bubble exhibited signs of periodic stabilization before separating close to the leading edge, forming a small secondary bubble rotating in the opposite sense to the main bubble.


1967 ◽  
Vol 27 (4) ◽  
pp. 691-704 ◽  
Author(s):  
R. T. Davis

Laminar incompressible flow past a semi-infinite flat plate is examined by using the method of series truncation (or local similarity) on the full Navier-Stokes equations. The first and second truncations are calculated at points on the plate away from the leading edge, while only the first truncation is calculated at the leading edge. The solutions are compared with the results from other approximate methods.


AIAA Journal ◽  
1966 ◽  
Vol 4 (11) ◽  
pp. 2062-2063 ◽  
Author(s):  
W. L. CHOW
Keyword(s):  

AIAA Journal ◽  
1974 ◽  
Vol 12 (2) ◽  
pp. 129-130 ◽  
Author(s):  
J. C. TANNEHILL ◽  
R. A. MOHLING ◽  
J. V. RAKICH

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
S. Collie ◽  
M. Gerritsen ◽  
P. Jackson

This paper investigates the performance of the popular k-ω and SST turbulence models for the two-dimensional flow past the flat plate at shallow angles of incidence. Particular interest is paid to the leading edge bubble that forms as the flow separates from the sharp leading edge. This type of leading edge bubble is most commonly found in flows past thin airfoils, such as turbine blades, membrane wings, and yacht sails. Validation is carried out through a comparison to wind tunnel results compiled by Crompton (2001, “The Thin Aerofoil Leading Edge Bubble,” Ph.D. thesis, University of Bristol). This flow problem presents a new and demanding test case for turbulence models. The models were found to capture the leading edge bubble well with the Shear-Stress Transport (SST) model predicting the reattachment length within 7% of the experimental values. Downstream of reattachment both models predicted a slower boundary layer recovery than the experimental results. Overall, despite their simplicity, these two-equation models do a surprisingly good job for this demanding test case.


Sign in / Sign up

Export Citation Format

Share Document