scholarly journals A SIMPLIFIED COOLING LOAD CALCULATION METHOD AND AIR CONDITIONING SYSTEMS FOR OUTSIDE INSULATED BUILDINGS

2002 ◽  
Vol 67 (557) ◽  
pp. 25-31
Author(s):  
Taghi SADEGHIAN ◽  
Noboru ARATANI ◽  
Masamichi ENAI ◽  
Kenzo SUZUKI
2012 ◽  
Vol 433-440 ◽  
pp. 6023-6027
Author(s):  
Hui Fan Zheng ◽  
Ting Ting Xiao

Theory analysis method is adopted in this paper to review the development history of air-conditioning loads calculation, point out that the air-conditioning loads calculation went through from steady calculation to periodic unsteady calculation and then to new period of dynamic load calculation. Simulation calculation of air-conditioning cooling load have been developed deeply, and many software can be used to calculate the hourly cooling load about building. At last, The application of neutral network for prediction of cooling load in air conditioning systems have been introduced.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Ching-Wei Chen ◽  
Yung-Chung Chang

This study covers records of various parameters affecting the power consumption of air-conditioning systems. Using the Support Vector Machine (SVM), the chiller power consumption model, secondary chilled water pump power consumption model, air handling unit fan power consumption model, and air handling unit load model were established. In addition, it was found thatR2of the models all reached 0.998, and the training time was far shorter than that of the neural network. Through genetic programming, a combination of operating parameters with the least power consumption of air conditioning operation was searched. Moreover, the air handling unit load in line with the air conditioning cooling load was predicted. The experimental results show that for the combination of operating parameters with the least power consumption in line with the cooling load obtained through genetic algorithm search, the power consumption of the air conditioning systems under said combination of operating parameters was reduced by 22% compared to the fixed operating parameters, thus indicating significant energy efficiency.


Author(s):  
Azridjal Aziz ◽  
Muhammad Rif’at Syahnan ◽  
Afdhal Kurniawan Mainil ◽  
Rahmat Iman Mainil

Split air conditioning systems produce reasonable amount of condensate which is usually not utilized and thrown away to the environment. On the other hand, it consumes a lot of energy during operation. The aim of this study is to investigate the improvement of air conditioning systems performance utilizing condensate. A direct evaporative cooling using condensate is incorporated on a 0.74 ton-cooling capacity of split air conditioning to decrease the air temperature before entering the condenser. Performances of the split air conditioning with and without direct evaporative cooling are compared and presented in this paper. The results show that the use of direct evaporative cooling using condensate into the air before passing through the condenser reduces the compressor discharge pressure. The decrease of the condenser pressure led to 4.7% and 7% reduction of power consumption for air conditioner without cooling load and air conditioner with 2000 W cooling load, respectively. The cooling effect and coefficient of performance (COP) increase with the decrease of compressor power. The use of direct evaporative cooling with condensate into the air before entering the condensing system can enhance the system performance and protect the environment.


Sign in / Sign up

Export Citation Format

Share Document