discharge pressure
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 56)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Saurabh Anand ◽  
Eadie Azahar B Rosland ◽  
Elsayed Ouda Ghonim ◽  
Latief Riyanto ◽  
Khairul Azhar B Abu Bakar ◽  
...  

Abstract PETRONAS had embarked on an ambitious thru tubing ESP journey in 2016 and had installed global first truly rig less offshore Thru Tubing ESP (TTESP) in 2017. To replicate the success of the first installation, TTESP's were installed in Field – T. However, all these three TTESP's failed to produce fluids to surface. This paper provides the complete details of the troubleshooting exercise that was done to find the cause of failure in these wells. The 3 TTESP's in Field – T were installed as per procedure and was ready to be commissioned. However, during the commissioning, it was noticed that the discharge pressure of the ESP did not build-up and the TTESP's tripped due to high temperature after 15 – 30 mins of operation. Hence none of the 3 TTESP's could be successfully commissioned. Considering the strategic importance of TTESP's in PETRONAS's artificial lift plans, detailed troubleshooting exercise was done to find the root cause of failure to produce in these three wells. This troubleshooting exercise included diesel bull heading which gave some key pump performance related data. The three TTESP's installed in Field – T were of size 2.72" and had the potential to produce an average 1500 BLPD at 80% water cut. The TTESP deployment was fully rigless and was installed using 0.8" ESP power cable. The ESP and the cable was hung-off from the surface using a hanger – spool system. The entire system is complex, and the installation procedure needs to be proper to ensure a successful installation. The vast amount of data gathered during the commissioning and troubleshooting exercise was used for determining the failure reason and included preparation of static and dynamic well ESP model. After detailed technical investigative work, the team believes to have found the root cause of the issue which explains the data obtained during commission and troubleshooting phase. The detailed troubleshooting workflow and actual data obtained will be presented in this paper. A comprehensive list of lessons learnt will also be presented which includes very important aspects that needs to be considered during the design and installation of TTESP. The remedial plan is finalized and will be executed during next available weather window. The key benefit of a TTESP installation is its low cost which is 20% – 30% of a rig-based ESP workover in offshore. Hence it is expected that TTESP installations will pick-up globally and it's important for any operator to fully understand the TTESP systems and the potential pain points. PETRONAS has been a pioneer in TTESP field, and this paper will provide details on the learning curve during the TTESP journey.


2021 ◽  
Vol 13 (18) ◽  
pp. 10340
Author(s):  
Vansh Vyas ◽  
Hyun-woo Jeon ◽  
Chao Wang

A compressed air system (CAS) is one of the most common and energy-consuming systems in manufacturing. To practice more economically and environmentally sustainable manufacturing, manufacturers need ways to reduce the energy costs and carbon footprint, resulting from a CAS in their production systems. While preliminary energy studies on a CAS and on machining processes are available separately, existing research studies rarely analyze energy costs using a tool that considers both a CAS and production systems. Therefore, in this study, we propose an energy simulation tool that combines a CAS and a production system to evaluate the effects of a CAS and production parameters on energy consumption and costs at a factory level. In particular, we develop a time-discretized algorithm for simulating a CAS to accurately consider the dynamics of CAS parameters such as pressure and flow rate. From 48 simulation case studies, we show that changes in a CAS such as proper HP sizing, a reduction in compressed air leaks, and a decrease in the discharge pressure can increase productivity and reduce energy costs by up to 11%. The simulation analysis from this study suggests a way to help manufacturers and researchers find more sustainable ways to achieve energy-efficient configurations for production systems including a CAS.


Author(s):  
Sugeng Hadi Susilo ◽  
Agus Setiawan

The paper discusses the performance of the pump in relation to the impeller. The impeller section is determined by the number and angle of the blades. Therefore, the purpose of this study was to analyze the role of the number and angle of impeller blades on the performance (discharge and discharge pressure) of centrifugal pumps based on experiments and simulations. The method used is experiment and simulation. Using a centrifugal pump type GWP 20/4 SW, Maximum Output: 6.5 HP/3500 rpm, Inlet/Outlet: 2 Inch, Dimensions: 475x375x370 mm. Experiments and simulations by varying the number of blades 2, 4, and 6 with a blade tilt angle of 130°, 150°, and 160°. For flow simulation using solid works program. The results show that pump performance is related to discharge pressure, impeller with 2-blades and an angle of 130° the pressure increases 0.45–2.45 bar, for 150° increases 0.14–2.96 bar, and 160° increases 0.29–3.07 bars. For a 4-blade impeller and an angle of 130°, the pressure increases by 0.48–3.12 bar, for 150° it increases by 0.39–3.39 bar, and for 160° it increases by 0.36–3.48 bar. While the impeller for 6-blades with an angle of 130° the pressure increases from 0.6 bar to 3.72 bar, for 150° increases from 1.36 to 4.34 bar, and 160° increases by 0.36–4.74 bar. While it related pump performance to flow rate, increasing the number of blades causes a decrease in flow rate. The highest flow rate is in a 2-blade impeller with a blade angle of 130° is 404.91 l/s. The lowest flow rate is on a 6-blade impeller with an angle of 160° is 279.66 l/s


Author(s):  
Azridjal Aziz ◽  
Muhammad Rif’at Syahnan ◽  
Afdhal Kurniawan Mainil ◽  
Rahmat Iman Mainil

Split air conditioning systems produce reasonable amount of condensate which is usually not utilized and thrown away to the environment. On the other hand, it consumes a lot of energy during operation. The aim of this study is to investigate the improvement of air conditioning systems performance utilizing condensate. A direct evaporative cooling using condensate is incorporated on a 0.74 ton-cooling capacity of split air conditioning to decrease the air temperature before entering the condenser. Performances of the split air conditioning with and without direct evaporative cooling are compared and presented in this paper. The results show that the use of direct evaporative cooling using condensate into the air before passing through the condenser reduces the compressor discharge pressure. The decrease of the condenser pressure led to 4.7% and 7% reduction of power consumption for air conditioner without cooling load and air conditioner with 2000 W cooling load, respectively. The cooling effect and coefficient of performance (COP) increase with the decrease of compressor power. The use of direct evaporative cooling with condensate into the air before entering the condensing system can enhance the system performance and protect the environment.


2021 ◽  
Author(s):  
Peter Imoukhuede ◽  
Akin Obe ◽  
Atuanya Chukwuma ◽  
Emeka Anyanwu ◽  
Oyie Ekeng ◽  
...  

Abstract The design of a gravity dump flood well for a depleted QG reservoir located offshore in M Field was significantly enhanced by the inclusion of an Electric Submersible Pump (ESP). This resulted in 1,500 barrels of oil per day production gain from producer wells in Area 2 of the reservoir that had become inactive due to low tubing head pressures with reservoir pressure depletion. The identification of an optimal water injector location to improve the low reservoir energy and sweep oil towards the existing producers was grossly challenged due to remote nature of existing wells from water injection facility. Significant cost implications exist for the construction of new pipelines to the Water Injection facility. In addition, the existing infrastructure is aged and degraded, creating a need for a cost-saving solution. The challenges were tackled by implementing a pilot ESP powered dumpflood in an ideally situated injector "Xi". With this technique, a single well acts as both the producer and injector, utilizing an ESP generated pressure differential to pump water from a deep aquifer to a shallow reservoir or boost natural gravity forces to reverse pump water from a shallow aquifer to a deeper reservoir (R. Quttainah 2001). The latter option proved ideal for this application given the shallower location of the water source relative to the target oil zone. By innovatively using Y-tool technology, the ESP reverse pumped 7,000 BWIPD at a discharge pressure of 772 psig from the upper "A" aquifer zone into the target oil QG reservoir within the same well at startup. The ESP motor was powered by a 4km electrical subsea cable to draw power from the field's Quarter Production Platform. Significant cost savings were achieved by eliminating the need for pipeline construction since water source and injection were combined in one well. Within 3-months of ESP startup, the target reservoir pressure boost resulted in the restoration of inactive wells and 1,500 BOPD incremental production gain from producers in Area 2 of the reservoir. Following the success of the ESP powered dumpflood pilot project with initial oil production gain of 1,500 bopd and significant cost savings, a study is ongoing for a field-wide deployment of the technique in field M and 2 neighbouring fields.


2021 ◽  
Vol 8 (1) ◽  
pp. 30
Author(s):  
Rachmat Subagyo ◽  
Bagaskoro Rizqining Hendratno

Penelitian ini bertujuan untuk mengetahui unjuk kerja pompa sentrifugal. Data-data yang diperlukan dalam riset ini diperoleh dari data commissioning dan data aktual pompa sentrifugal Lean Benfield Solution. Adapun data yang dibutuhkan meliputi: kecepatan (RPM), Kapasitas (Q), Head (H), Axle Power (BHP), Hydrolysis Power (WHP), Suction Pressure, Discharge Pressure, rasio Discharge Pressure dan Efficiency (ɳ). Hasil analisis perhitungan pada minggu pertama diperoleh data-data sebagai berikut: ∆P= 34,8 kg / cm2, Head (H)= 274m, Hydrolysis Power (WHP)= 84kW, Axle Power (BHP)= 116kW, Efisiensi pompa= 72%, begitu juga minggu kedua hingga minggu kedelapan. Kemudian hasil data aktual yang diperoleh dibandingkan dengan data komisioning. Hasil analisis data pada penelitian ini menunjukkan tidak ada data yang melebihi data komisioning. Data aktual tertinggi dicapai pada minggu ke delapan dengan nilai sebagai berikut: ∆P sebesar= 36kg/cm2, Head (H)= 283m, Hydrolysis Power (WHP)= 104kW, Axle Power (BHP)= 141kW dan Efisiensi= 74,8%.


2021 ◽  
Vol 11 (11) ◽  
pp. 4855
Author(s):  
Anci Wang ◽  
Jianmin Fang ◽  
Xiang Yin ◽  
Yulong Song ◽  
Feng Cao ◽  
...  

The air flow rate on the gas cooler side is one of the key parameters affecting the performance and running safety of transcritical CO2 electric vehicle air conditioning systems. After experimentally analyzing the effects of the air volume flow rate in the gas cooler on the cycle parameters and system performance, a novel method to evaluate the optimal air flow rate was proposed. In addition, the effect of the gas cooler air volume flow rate on the key performance parameters of the system (e.g., optimal discharge pressure) was explored. Finally, the coupling effects of the compressor speed, ambient temperature and optimal air flow rate on the system performance was also exhaustively assessed. It was found that as the discharge temperature, the CO2 temperature at the gas cooler outlet and the discharge pressure did not vary more than ±2%, the corresponding gas cooler air volume flow rate was optimal. For the single-row and dual-process microchannel evaporator used in this work, the recommended value of the optimal gas cooler air volume flow rate was 2500 m3·h−1. The results could provide reference for the fan speed design of electric vehicle CO2 air conditioning systems, especially for the performance under idling model.


Author(s):  
Farshid Meshkinfam ◽  
Ghaus Rizvi

Abstract One of the most effective treatments for type 1 and 2 diabetes is the administration of Insulin. Single needle mechanical insulin pumps are heavy and painful. Micro-needle based MEMS drug delivery devices can be an excellent solution for insulin dosing. The use of Micro-Needle Array provides a safe, painless and robust injection application. A stackable structure results in minimum dimensions and the final product can be in the form of a patch that can be applied to any flat area of human skin. The design of positive volumetric insulin pump is a multi-physics problem where the volumetric changes of the main pump chamber and the pumped fluid are directly coupled. We used a multiphysics simulation platform to investigate the performance of a MEMS based Insulin Micro-Pump driven by a piezoelectric actuator which acts on a diaphragm. The positive and negative movement of the diaphragm results in generation of a discharge pressure at the microneedle array. The pressure and flow rate is controlled by varying the excitation voltage and frequency applied to the actuator. The model was used to evaluate the performance of the Micro-Pump. It was found to be capable of generating the required interfacial pressures at the human skin to deliver the target dosage by matching the minimum and maximum range of diabetic patients' operating parameters.


Sign in / Sign up

Export Citation Format

Share Document