scholarly journals EFFECTS OF ATTENTION ON VISUAL PERCEPTION BY MEANS OF ANALYSIS OF VISUAL EVOKED POTENTIALS IN BRAIN

2003 ◽  
Vol 68 (567) ◽  
pp. 79-86 ◽  
Author(s):  
Takeshi AKITA ◽  
Kotaroh HIRATE ◽  
Masato YASUOKA
2021 ◽  
Vol 15 ◽  
Author(s):  
Motohiro Kimura

When a visual object changes its position along with certain sequential regularities, the visual system rapidly and automatically forms a prediction regarding the future position of the object based on the regularities. Such prediction can drastically alter visual perception. A phenomenon called representational momentum (RM: a predictive displacement of the perceived final position of a visual object along its recent regular pattern) has provided extensive evidence for the predictive modulation of visual perception. The purpose of the present study was to identify neural effects that could explain individual differences in the strength of the predictive modulation of visual perception as measured by RM. For this purpose, in two experiments with a conventional RM paradigm where a bar was discretely presented in a regular rotation manner (with a step of 18° in Experiment 1 and a step of 20° in Experiment 2), visual evoked potentials (VEPs) in response to the regularly rotated bar were measured, and correlations between the magnitudes of RM and VEPs were examined. The results showed that the magnitudes of RM and central P2 were negatively correlated, consistently in both experiments; participants who showed a smaller central P2 tended to exhibit greater RM. Together with a previous proposal that central P2 would represent delayed reactivation of lower visual areas around the striate and prestriate cortices via reentrant feedback projections from higher areas, the present results suggest that greater suppression of delayed reactivation of lower visual areas (as indicated by smaller central P2) may underlie stronger predictive modulation of visual perception (as indicated by greater RM).


2022 ◽  
Vol 15 ◽  
Author(s):  
Chengcheng Han ◽  
Guanghua Xu ◽  
Xiaowei Zheng ◽  
Peiyuan Tian ◽  
Kai Zhang ◽  
...  

The refresh rate is one of the important parameters of visual presentation devices, and assessing the effect of the refresh rate of a device on motion perception has always been an important direction in the field of visual research. This study examined the effect of the refresh rate of a device on the motion perception response at different stimulation frequencies and provided an objective visual electrophysiological assessment method for the correct selection of display parameters in a visual perception experiment. In this study, a flicker-free steady-state motion visual stimulation with continuous scanning frequency and different forms (sinusoidal or triangular) was presented on a low-latency LCD monitor at different refresh rates. Seventeen participants were asked to observe the visual stimulation without head movement or eye movement, and the effect of the refresh rate was assessed by analyzing the changes in the intensity of their visual evoked potentials. The results demonstrated that an increased refresh rate significantly improved the intensity of motion visual evoked potentials at stimulation frequency ranges of 7–28 Hz, and there was a significant interaction between the refresh rate and motion frequency. Furthermore, the increased refresh rate also had the potential to enhance the ability to perceive similar motion. Therefore, we recommended using a refresh rate of at least 120 Hz in motion visual perception experiments to ensure a better stimulation effect. If the motion frequency or velocity is high, a refresh rate of≥240 Hz is also recommended.


2012 ◽  
Author(s):  
Jeffrey S. Bedwell ◽  
Yuri Rassovsky ◽  
Pamela Butler ◽  
Andrea Ranieri ◽  
Christopher Spencer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document