scholarly journals ACTUAL MASS AND STIFFNESS ESTIMATION OF A REINFORCED CONCRETE BUILDING BASED ON ITS RESONANT FREQUENCY SHIFT DUE TO A DEFINITE ADDED MASS

Author(s):  
Hirohito MORI ◽  
Hiroshi KAWASE
Author(s):  
Mitesh B. Panchal ◽  
S. H. Upadhyay

This paper illustrates the dynamic behavior of a doubly-clamped single walled boron nitride nanotube (SWBNNT) as a mass sensor. To this end, a 3-dimensional atomistic model based on molecular structural mechanics is developed such that the proximity of the model to the actual atomic structure of the nanotube is significantly retained. Different types of zigzag and armchair layouts of SWBNNTs are considered with doubly-clamped end constraints. Implementing the finite element simulation approach, the resonant frequency shift based analysis is performed for doubly-clamped end-constraints, for an additional nanoscale mass at the middle of the length, and at the intermediate landing position along the length of the nanotube. The effect of the intermediate landing position of added mass on the resonant frequency shift is analyzed by considering excitations of the fundamental modes of vibration. The finite element method (FEM) based simulation results are validated using the continuum mechanics based analytical results, considering the effective wall thickness of the SWBNNT. The present approach is found to be effectual in terms of dealing with different chiralities, boundary conditions, and the consideration of the added mass to analyze the dynamic behavior of the doubly-clamped SWBNNT based nanomechanical resonators.


2007 ◽  
Vol 35 (5) ◽  
pp. 495-505
Author(s):  
Minoru Yoshimoto ◽  
Satoshi Kobirata ◽  
Wataru Sakamoto ◽  
Hidenobu Aizawa ◽  
Shigeru Kurosawa

2017 ◽  
Author(s):  
Chee Ghuan Tan ◽  
Wei Ting Chia ◽  
Taksiah A. Majid ◽  
Fadzli Mohamed Nazri ◽  
Mohd Irwan Adiyanto

Sign in / Sign up

Export Citation Format

Share Document