scholarly journals LARGE EDDY SIMULATION OF TURBULENT FLOW OF STRONG WIND IN THE AREA DENSELY ARRANGED WITH HIGH-RISE BUILDINGS : Feasibility of wind-velocity and wind-pressure data predicted for wind-resistant designs in Makati area of the Philippines

Author(s):  
Tetsuro TAMURA ◽  
Osamu OHNO ◽  
Tsuyoshi NOZU
2018 ◽  
Vol 22 (4) ◽  
pp. 997-1006 ◽  
Author(s):  
Yin Luo ◽  
Hongjun Liu ◽  
Huili Xue ◽  
Kun Lin

In this study, the multiscale synthetic eddy method, which can establish coherent turbulent structures and satisfy predefined turbulent statistical and spectral properties, is employed to generate the inflow turbulence for large-eddy simulation of a high-rise building. The recycling method of Lund and synthetic eddy method is also applied to assess the suitability of multiscale synthetic eddy method. The wind pressure at each mesh face centre on the surface of the high-rise building model is exported in the simulation to determine the wind-induced aerodynamic loads. Compared with the synthetic eddy method, the multiscale synthetic eddy method result is in higher agreement with that of the recycling method of Lund in terms of the wind pressure distribution, wind load characteristic and external flow field of the high-rise building.


2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Wen Zhang ◽  
Minping Wan ◽  
Zhenhua Xia ◽  
Jianchun Wang ◽  
Xiyun Lu ◽  
...  

Author(s):  
N Kharoua ◽  
L Khezzar

Large eddy simulation of turbulent flow around smooth and rough hemispherical domes was conducted. The roughness of the rough dome was generated by a special approach using quadrilateral solid blocks placed alternately on the dome surface. It was shown that this approach is capable of generating the roughness effect with a relative success. The subgrid-scale model based on the transport of the subgrid turbulent kinetic energy was used to account for the small scales effect not resolved by large eddy simulation. The turbulent flow was simulated at a subcritical Reynolds number based on the approach free stream velocity, air properties, and dome diameter of 1.4 × 105. Profiles of mean pressure coefficient, mean velocity, and its root mean square were predicted with good accuracy. The comparison between the two domes showed different flow behavior around them. A flattened horseshoe vortex was observed to develop around the rough dome at larger distance compared with the smooth dome. The separation phenomenon occurs before the apex of the rough dome while for the smooth dome it is shifted forward. The turbulence-affected region in the wake was larger for the rough dome.


Wind Energy ◽  
2014 ◽  
Vol 18 (12) ◽  
pp. 2025-2045 ◽  
Author(s):  
Xiaolei Yang ◽  
Fotis Sotiropoulos ◽  
Robert J. Conzemius ◽  
John N. Wachtler ◽  
Mike B. Strong

Sign in / Sign up

Export Citation Format

Share Document