vertical slot fishway
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 20)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Vol 174 ◽  
pp. 106446
Author(s):  
Juan Francisco Fuentes-Pérez ◽  
Ana L. Quaresma ◽  
Antonio Pinheiro ◽  
Francisco Javier Sanz-Ronda

2021 ◽  
pp. 641-647
Author(s):  
H. M. P. M. Hitihamu ◽  
D. M. Pananwala ◽  
S. B. Weerakoon

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2711
Author(s):  
Mohammad Ahmadi ◽  
Amir Ghaderi ◽  
Hossein MohammadNezhad ◽  
Alban Kuriqi ◽  
Silvia Di Francesco

The implementation of vertical slot fishway (VSF) has been demonstrated to be an effective mitigation measure to alleviate extensive river fragmentation by artificial hydraulic structures such as weirs and dams. However, non-suitable flow velocity and turbulent kinetic energy significantly affect fish swimming behavior and, as a result, hinder such facilities’ performance. Therefore, this study’s main objective is to propose a new configuration of VSF that can allow the passage of different fish species under frequent variations of flow discharge. To achieve that objective several novel configurations of VSF were numerically investigated using the FLOW-3D® model. Namely, five variants of angles between baffles, four different pool widths, and another upgraded version of VSF by introducing cylindrical elements positioned after the opening behind the baffles were tested. Results show that smaller angles between baffles increase the Vmax and decrease the maximum turbulent kinetic energy (TKEmax); the opposite result was obtained when increasing angles between baffles. Namely, the Vmax was increased up to 17.9% for α = 0° and decreased up to 20.37% for α = 37°; in contrast, TKEmax decreased up to −20% for α = 0° and increased up to 26.5% for α = 37°. Narrowing the pool width increased the Vmax linearly; nevertheless, it did not significantly affect the TKEmax as the maximum difference was only +3.5%. Using cylinders with a large diameter decreased the Vmax and increased TKEmax; in contrast, using cylinders with smaller diameters further reduced the Vmax velocity inside the pool while increasing the TKEmax. However, in the case of cylinders, the dimension of the recirculation depended on the configuration and arrangement of the cylinder within the pool. Overall, the maximum velocity was reached at near 77% of the water depth in all cases. Finally, solution-oriented findings resulted from this study would help water engineers to design cost-effective VSF fishways to support the sustainable development of hydraulic structures while preserving aquatic biodiversity.


Author(s):  
Daniela dos Santos da Mata Gomes ◽  
Mônica de Aquino Galeano Massera da Hora ◽  
Gabriel de Carvalho Nascimento

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1299
Author(s):  
Ping Cao ◽  
Xiangpeng Mu ◽  
Xiang Li ◽  
Baoligao Baiyin ◽  
Xiuying Wang ◽  
...  

The successful fish upstream movement through a dam/gate is closely associated with the hydraulic conditions of a fishway. To improve the passage efficiency, this study investigated the upstream swimming behaviors of juvenile grass carp, a representative fish of four major Chinese carps, under characteristic hydraulic conditions of a designed vertical slot fishway model. The impacts of different discharges and baffle lead angles on the successful movement of test fish were analyzed, and the selection of the movement trajectory was studied through overlay of their upstream swimming trajectories on the water flow field resulting from numerical modeling. We found that under the same discharge, the percentage of successful test fish movement with a lead angle of 45° was higher than 60° and 30°. Within a fixed lead angle, the higher the discharge, the lower the percentage of successful movement. During upstream movement, the test fish had a preferred water velocity of 0.01–0.45 m/s in the pool, and avoided areas where the turbulence kinetic energy (TKE) was greater than 0.012 m2/s2. These results provide a basis for the hydraulic design of vertical slot fishways and a reference for studying swimming behaviors of other fish species.


2021 ◽  
Vol 73 (03) ◽  
pp. 235-247

Physical and 3D numerical hydrodynamic flow models and an agent-based model are developed with the principal objective of analysing fish behaviour in two vertical slot fishway configurations. Fish energy consumption due to swimming represents a crucial criterion for selecting an appropriate fishway configuration. The modelled fish detects ambient flow conditions, makes decisions based on its sensing and cognitive abilities, adapts to the changes in its environment, and moves toward the regions of less turbulent kinetic energy. The results show that fishways with longer pools enable passage of fish at a lower energy consumption.


2021 ◽  
Author(s):  
Siqi Tong ◽  
Silke Wieprecht ◽  
Martin Schletterer

<p>This study was carried out in the middle and lower reaches of the Jinsha River in southwest China, which represents the upper Yangtze River. Hydraulic structures (14 cascade hydropower stations) are planned and/or constructed in this system, which is considered as largest hydropower base. We aim to summarize appropriate measures to restore the riverine continuum in the middle and lower reaches of the Jinsha River, where high-head cascade hydropower dams are located or planned.</p><p>We distributed a questionnaire to Chinese researchers in the related fields (scientists, hydropower operators and NGOs in China, n = 60). According to the responses, fishways, fish lift, fish lock, trap-and-truck system as well as fish hatcheries (artificial breeding) are recognized to ensure passing respectively preserving fish in the Jinsha River basin.</p><p>A longitudinal connectivity assessment of the study area revealed a severely disturbed continuity status. Based on the biological analyses of the demands of the target fish species and review of fish pass technologies, a vertical-slot fishway is proposed.</p><p>Considering the dam heights and the geographical conditions, it is recommended to combine the vertical-slot fishway with these alternatives to achieve a higher efficiency in passing fish as well as to recover the river continuity towards regional sustainable development.</p>


Author(s):  
Aydin Shishegaran ◽  
Mohammad Shokrollahi ◽  
Ali Mirnorollahi ◽  
Arshia Shishegaran ◽  
Mohammadreza Mohammad Khani

2020 ◽  
Vol 22 ◽  
pp. e00990 ◽  
Author(s):  
Lu Cai ◽  
Jihua Chen ◽  
David Johnson ◽  
Zhiying Tu ◽  
Yingping Huang

Sign in / Sign up

Export Citation Format

Share Document