scholarly journals CREEP BEHAVIOR OF HYBRID REBAR-GLULAM TIMBER BEAM UNDER LONG-TERM LOADING

2021 ◽  
Vol 86 (786) ◽  
pp. 1190-1201
Author(s):  
Shinichi SHIOYA ◽  
Kanta FUKUDOME ◽  
Nao MATSUOKA
Keyword(s):  
2004 ◽  
Vol 261-263 ◽  
pp. 1097-1102 ◽  
Author(s):  
Jian Liu ◽  
Xia Ting Feng ◽  
Xiu Li Ding ◽  
Huo Ming Zhou

The time-dependent behavior of rock mass, which is generally governed by joints and shearing zones, is of great significance for engineering design and prediction of long-term deformation and stability. In situ creep test is a more effective method than laboratory test in characterizing the creep behavior of rock mass with joint or shearing zone due to the complexity of field conditions. A series of in situ creep tests on granite with joint at the shiplock area of the Three-Gorges Project and basalt with shearing zone at the right abutment of the Xiluodu Project were performed in this study. Based on the test results, the stress-displacement-time responses of the joints and basalt are analyzed, and their time-dependent constitutive model and model coefficients are given, which is crucial for the design to prevent the creep deformations of rock masses from causing the failure of the operation of the shiplock gate at the Three-Gorges Project and long-term stability of the Xiluodu arc dam.


2018 ◽  
Vol 149 ◽  
pp. 02027
Author(s):  
Dahhaoui Hachimi ◽  
Belayachi Naima ◽  
Zadjaoui Abdeldjalil

Creep behavior of clayey soils plays an extremely important role in the landslide process. The soils that make up these sliding zones are often in unsaturated state. This point indicates the need to take into account the suction effect as hydric parameter on the long-term deformation of clayey soils. In this paper, a primary creep model named Modified Time Hardening (MTH) for unsaturated soils with different matric suction has been built. Based on the literature tests results[1][2], parameters C1 and C2 of the model have relations with suction and deviator stress level respectively. The primary creep strainwill be able to demonstrate unsaturated effect of the soils. comparison between the calculated results and the literature tests results shows a good coherence. The work underway at the university of Orleans will show later the relevance of model used in the present work.


2019 ◽  
Vol 18 ◽  
pp. 60-65 ◽  
Author(s):  
Joerg Fischer ◽  
Patrick R. Bradler ◽  
David Schmidtbauer ◽  
Reinhold W. Lang ◽  
Roman Wan-Wendner

Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1215 ◽  
Author(s):  
Ke-Chang Hung ◽  
Tung-Lin Wu ◽  
Jyh-Horng Wu

In this study, methyltrimethoxysilane (MTMOS), methyltriethoxysilane (MTEOS), tetraethoxysilane (TEOS), and titanium(IV) isopropoxide (TTIP) were used as precursor sols to prepare wood-inorganic composites (WICs) by a sol-gel process, and subsequently, the long-term creep behavior of these composites was estimated by application of the stepped isostress method (SSM). The results revealed that the flexural modulus of wood and WICs were in the range of 9.8–10.5 GPa, and there were no significant differences among them. However, the flexural strength of the WICs (93–103 MPa) was stronger than that of wood (86 MPa). Additionally, based on the SSM processes, smooth master curves were obtained from different SSM testing parameters, and they fit well with the experimental data. These results demonstrated that the SSM was a useful approach to evaluate the long-term creep behavior of wood and WICs. According to the Eyring equation, the activation volume of the WICs prepared from MTMOS (0.825 nm3) and TEOS (0.657 nm3) was less than that of the untreated wood (0.832 nm3). Furthermore, the WICs exhibited better performance on the creep resistance than that of wood, except for the WICMTEOS. The reduction of time-dependent modulus for the WIC prepared from MTMOS was 26% at 50 years, which is the least among all WICs tested. These findings clearly indicate that treatment with suitable metal alkoxides could improve the creep resistance of wood.


1997 ◽  
Vol 132-136 ◽  
pp. 583-586 ◽  
Author(s):  
K.C. Liu ◽  
Hao Tung Lin ◽  
C.O. Stevens ◽  
C.R. Brinkman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document