scholarly journals DAMAGE INVESTIGATION OF THE BUILDINGS DUE TO BALLISTIC EJECTA NEAR A VOLCANIC VENT AND DEVELOPMENT OF QUICK DAMAGE INVESTIGATION SHEET

2020 ◽  
Vol 26 (64) ◽  
pp. 1282-1287
Author(s):  
Tomohiro KUBO ◽  
Mitsuhiro YOSHIMOTO
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Hiroyuki Yamada ◽  
Kohei Tateyama ◽  
Shino Naruke ◽  
Hisashi Sasaki ◽  
Shinichi Torigata ◽  
...  

AbstractThe destruction caused by ballistic ejecta from the phreatic eruptions of Mt. Ontake in 2014 and Mt. Kusatsu-Shirane (Mt. Moto-Shirane) in 2018 in Japan, which resulted in numerous casualties, highlighted the need for better evacuation facilities. In response, some mountain huts were reinforced with aramid fabric to convert them into shelters. However, a number of decisions must be made when working to increase the number of shelters, which depend on the location where they are to be built. In this study, we propose a method of using high-strength steel to reinforce wooden buildings for use as shelters. More specifically, assuming that ballistic ejecta has an impact energy of 9 kJ or more, as in previous studies, we developed a method that utilizes SUS304 and SS400 unprocessed steel plates based on existing impact test data. We found that SUS304 is particularly suitable for use as a reinforcing material because it has excellent impact energy absorption characteristics due to its high ductility as well as excellent corrosion resistance. With the aim of increasing the structural strength of steel shelters, we also conducted an impact test on a shelter fabricated from SS400 deck plates (i.e., steel with improved flexural strength provided by work-hardened trapezoidal corrugated plates). The results show that the shelter could withstand impact with an energy of 13.5 kJ (2.66 kg of simulated ballistic ejecta at 101 m/s on impact). In addition, from the result of the impact test using the roof-simulating structure, it was confirmed the impact absorption energy is further increased when artificial pumice as an additional protective layer is installed on this structure. Observations of the shelter after the impact test show that there is still some allowance for deformation caused by projectile impact, which means that the proposed steel shelter holds promise, not only structurally, but also from the aspects of transportation and assembly. Hence, the usefulness of shelters that use steel was shown experimentally. However, shelter construction should be suitable for the target environment.


2014 ◽  
Vol 501-504 ◽  
pp. 1535-1541 ◽  
Author(s):  
Jue Hui Xing ◽  
Ming Lu ◽  
Hai Wang Li ◽  
Ya Min Zhao ◽  
Yan Yu

People remained optimistic about the safety of the space grid structures, because the seismic damages of space grid structures were quite rare and rather light. However, two space grid structures got damaged in 2013 Lushan Ms 7.0 earthquake. The two structures are the double-layer reticulated shell structure and flatbed grid structure, namely Lushan Gymnasium and Lushan Middle School Gymnasium respectively. This paper briefly reviews the seismic damage phenomena of grid structures in historical earthquakes, and then focuses on the two damaged space grid structures in Lushan earthquake. The reason why the two space grid structures got damaged are derived from the force state analysis of the rods, ball joints and bearings. Finally, we come up with the effective advice for the seismic design and construction of the space grid structure.


2007 ◽  
Author(s):  
Frank R. Wagner ◽  
Anne Hildenbrand ◽  
Jean-Yves Natoli ◽  
Mireille Commandre ◽  
Fred Theodore ◽  
...  

2016 ◽  
Vol 57 ◽  
pp. 169-173 ◽  
Author(s):  
Jinman Lv ◽  
Yazhou Cheng ◽  
Qingming Lu ◽  
Javier R. Vázquez de Aldana ◽  
Xiaotao Hao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document