scholarly journals STUDY FOR REDUCTION OF THE FLOOR IMPACT SOUND LEVEL BY USING OF THE DAMPING MATERIALS : Part 5 : Study of the vibration response characteristics of the concrete slab

2000 ◽  
Vol 6 (10) ◽  
pp. 139-142 ◽  
Author(s):  
Atsuo MINEMURA ◽  
Yukio ISHIKAWA
2011 ◽  
Vol 117-119 ◽  
pp. 241-246
Author(s):  
Zhen Hai Gao ◽  
Gen Hua Yan ◽  
Peng Liu ◽  
Fa Zhan Chen ◽  
Fei Ming Lv

In this paper we conduct study on flow-induced vibration of large-span upwelling radial steel Gate and its hydraulic hoist. Place an emphasis on vibration response characteristics under two working conditions of diversion and drainage, which proves the safety of hydraulic hoist gate vibration caused by gate vibration. Firstly, we study on dynamic characteristics of fluid-structure interaction of association system of gate and start and stop lever, reveals the discipline of the effect fluid having on structural dynamic characteristics. On this basis, flow-induced vibration characteristics under two conditions of with and without start and stop lever action considered. The results indicate that the gate vibration response with hydraulic hoist used decreases, which explains start and stop lever has certain effect of restraining vibration on gate vibration. In addition, under the working condition of drainage the vibration magnitude of start and stop lever is smaller than that of gate body, which explains there is damping action during transference of gate vibration through start and stop lever. The results find out that on the assumption of optimized gate structure and hydraulic arrangement, it is practicable, safe and reliable to adopt hydraulic hoist. The achievement has directive significance on similar projects construction in the future


2005 ◽  
Vol 94 (1) ◽  
pp. 314-326 ◽  
Author(s):  
Alexander V. Galazyuk ◽  
Wenyu Lin ◽  
Daniel Llano ◽  
Albert S. Feng

A number of central auditory neurons exhibit paradoxical latency shift (PLS), a response characterized by longer response latencies at higher sound levels. PLS neurons are known to play a role in target ranging for echolocating bats that emit frequency-modulated sounds. We recently reported that early inhibition of unit’s oscillatory discharges is critical for PLS in the inferior colliculus (IC) of little brown bats. The goal of this study was to determine in echolocating bats and in nonecholocating animals (frogs): 1) the detailed characteristics of PLS and whether PLS was dependent on sound level, frequency, and duration; 2) the time course of inhibition underlying PLS using a paired-pulse paradigm. We found that 22% of IC neurons in bats and 15% in frogs exhibited periodic discharge patterns in response to tone pulses at high sound levels. The firing periodicity was unit specific and independent of sound level and duration. Other IC neurons (28% in bats; 14% in frogs) exhibited PLS. These PLS neurons shared several response characteristics: 1) PLS was largely independent of sound frequency and 2) the magnitude of shift in first-spike latency was either duration dependent or duration tolerant. For PLS neurons, application of bicuculline abolished PLS and unmasked the unit’s periodical firing pattern that served as the building block for PLS. In response to paired sound pulses, PLS neurons exhibited delay-dependent response suppression, confirming that high-threshold leading inhibition was responsible for PLS. Results also revealed the timing of excitatory and inhibitory inputs underlying PLS and its role in time-domain processing.


Author(s):  
Sang-Moon Lee ◽  
Bub-Gyu Jeon ◽  
Da-Won Yoon ◽  
Sung-Wan Kim ◽  
Woo-Young Jung

Sign in / Sign up

Export Citation Format

Share Document