damping materials
Recently Published Documents


TOTAL DOCUMENTS

303
(FIVE YEARS 43)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 317 ◽  
pp. 126054
Author(s):  
Lin Wu ◽  
Xiedong Zhang ◽  
Fuming Kuang ◽  
Wei Wang ◽  
Hong Guo

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4874
Author(s):  
Siti Aishah Abdul Aziz ◽  
Saiful Amri Mazlan ◽  
Ubaidillah Ubaidillah ◽  
Norzilawati Mohamad ◽  
Michal Sedlacik ◽  
...  

Polymer composites have been widely used as damping materials in various applications due to the ability of reducing the vibrations. However, the environmental and surrounding thermal exposure towards polymer composites have affected their mechanical properties and lifecycle. Therefore, this paper presents the effect of material-temperature dependence on the loss factor and phase shift angle characteristics. Two types of unageing and aging silicone-rubber-based magnetorheological elastomer (SR-MRE) with different concentrations of carbonyl iron particles (CIPs), 30 and 60 wt%, are utilized in this study. The morphological, magnetic, and rheological properties related to the loss factor and phase shift angle are characterized using a low-vacuum scanning electron microscopy, and vibrating sample magnetometer and rheometer, respectively. The morphological analysis of SR-MRE consisting of 30 wt% CIPs revealed a smoother surface area when compared to 60 wt% CIPs after thermal aging due to the improvement of CIPs dispersion in the presence of heat. Nevertheless, the rheological analysis demonstrated inimitable rheological properties due to different in-rubber structures, shear deformation condition, as well as the influence of magnetic field. No significant changes of loss factor occurred at a low CIPs concentration, whilst the loss factor increased at a higher CIPs concentration. On that basis, it has been determined that the proposed changes of the polymer chain network due to the long-term temperature exposure of different concentrations of CIPs might explain the unique rheological properties of the unaged and aged SR-MRE.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2645
Author(s):  
Jie Jiang ◽  
Qiuyu Tang ◽  
Xun Pan ◽  
Jinjin Li ◽  
Ling Zhao ◽  
...  

Novel thermoplastic polyamide elastomers (TPAEs) consisting of long-chain semicrystalline polyamide 1212 (PA1212) and amorphous polyetheramine were synthesized via one-pot melt polycondensation. The method provides accessible routes to prepare TPAEs with a high tolerance of compatibility between polyamide and polyether oligomers compared with the traditional two-step method. These TPAEs with 10 wt % to 76 wt % of soft content were obtained by reaction of dodecanedioic acid, 1,12-dodecanediamine, and poly(propylene glycol) (PPG) diamine. The structure–property relationships of TPAEs were systematically studied. The chemical structure and the morphologic analyses have revealed that microphase separation occurs in the amorphous region. The TPAEs that have long-chain PPG segments consist of a crystalline polyamide domain, amorphous polyamide-rich domain, and amorphous polyetheramine-rich domain, while the ones containing short-chain PPG segments comprise of a crystalline polyamide domain and miscible amorphous polyamide phase and amorphous polyetheramine phase due to the compatibility between short-chain polyetheramine and amorphous polyamide. These novel TPAEs show good damping performance at low temperature, especially the TPAEs that incorporated 76 wt % and 62 wt % of PPG diamine. The TPAEs exhibit high elastic properties and low residual strain at room temperature. They are lightweight with density between 1.01 and 1.03 g/cm3. The long-chain TPAEs have well-balanced properties of low density, high elastic return, and high shock-absorbing ability. This work provides a route to expand TPAEs to damping materials with special application for sports equipment used in extremely cold conditions such as ski boots.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wangqiang Xiao ◽  
Zhanhao Xu ◽  
Sheng Wang ◽  
Shaowei Yu ◽  
Kai Qin ◽  
...  

High-power gears are widely used in various engineering fields. The gear transmission system is an extremely complex elastic system, which produces complex vibration under internal and external excitation. For the vibration and noise problems caused by transmission error, a discrete element and finite coupling method based on the particle filling rate is proposed. Firstly, the gear dynamic model was established, and the particle damper was installed in the gear to reduce the vibration of the gear. Secondly, through the coupling process, the contact force and contact position between the noncontinuous medium and the continuous medium were correctly transferred to the corresponding nodes of the finite element analysis model. Then, the equivalent displacement mapping of the contact loads’ node of the gear was realized, and the transformation of the local coordinate to the global coordinate was carried out. Finally, by combining theoretical analysis with experimental verification, the influence of the filling rate of damping particles on the vibration reduction effect of the gearbox under different working conditions was studied. The 2 mm tungsten particles were selected, and the particle damper had the best damping effect when the filling rate was 88%.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 774
Author(s):  
Haitao Luo ◽  
Rong Chen ◽  
Siwei Guo ◽  
Jia Fu

At present, hard coating structures are widely studied as a new passive damping method. Generally, the hard coating material is completely covered on the surface of the thin-walled structure, but the local coverage cannot only achieve better vibration reduction effect, but also save the material and processing costs. In this paper, a topology optimization method for hard coated composite plates is proposed to maximize the modal loss factors. The finite element dynamic model of hard coating composite plate is established. The topology optimization model is established with the energy ratio of hard coating layer to base layer as the objective function and the amount of damping material as the constraint condition. The sensitivity expression of the objective function to the design variables is derived, and the iteration of the design variables is realized by the Method of Moving Asymptote (MMA). Several numerical examples are provided to demonstrate that this method can obtain the optimal layout of damping materials for hard coating composite plates. The results show that the damping materials are mainly distributed in the area where the stored modal strain energy is large, which is consistent with the traditional design method. Finally, based on the numerical results, the experimental study of local hard coating composites plate is carried out. The results show that the topology optimization method can significantly reduce the frequency response amplitude while reducing the amount of damping materials, which shows the feasibility and effectiveness of the method.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 757
Author(s):  
Yuanlin Zhang ◽  
Peixin Gao ◽  
Xuefeng Liu ◽  
Tao Yu ◽  
Zhaohua Huang

The basic structure of a pipeline is complex due to the narrow installation space of a pipeline system. Thus, a considerable number of complex pipelines are adopted in a pipeline system. When a hydraulic pipeline works, it is impacted by fluid, which produces vibration. It is necessary to implement an effective method to control the vibration of a pipeline system. In recent years, the research on active constrained layer damping (ACLD) technology is increasing. However, there are few studies on the vibration characteristics of the ACLD pipeline system conveying fluid. The damping and vibration characteristics of ACLD pipeline system conveying fluid are studied in this paper. Considered the influence of the fluid–structure interaction, the motion equations can be derived, and the finite element model established of the pipeline based on ACLD treatment. The effect of the elasticity modulus, the thickness of the viscoelastic and constrained layer, the length and position of the ACLD patch, the velocity and pressure of fluid, and the voltage for the constrained layer, are all considered. The results show that ACLD technology has great damping influence on the conveying fluid pipeline.


Author(s):  
Fumio Asai ◽  
Takahiro Seki ◽  
Taiki Hoshino ◽  
Xiaobin Liang ◽  
Ken Nakajima ◽  
...  

2021 ◽  
pp. 19-21
Author(s):  
A. I. Syatkovskii ◽  
T. B. Skuratova ◽  
Y. V. Krilova ◽  
I. D. Simonov-Emelyanov

This article covers the development of the thermoplastic extrusion films made of poly(vinyl acetate) (PVA) and poly(butyl methacrylate) (PBMA) for use as an inner layer in metal-polymer-metal multiple-layered vibro-damping materials that can work in contact with water. The effect of the amount of the introduced plasticizer on the dynamic properties of polymer films made of PVA and PBMA is studied on the example of plasticizers from the group of esters of dicarboxylic acids, organic phosphates and chloroparaffins. The processes of water sorption by polymer films and washing out plasticizers from them have been investigated. It has been demonstrated that PBMA-based films containing chlorinated paraffins as a plasticizer have the best water resistance.


2021 ◽  
Vol 315 ◽  
pp. 43-49
Author(s):  
Si Bin Zhang ◽  
Ze Chao Jiang ◽  
Qing Chao Tian

Vibration systems require the damping materials operating at high service temperature. In this paper, damping performance of HT100, M2052 and S316L at 350K were evaluated by applying different frequencies, strain amplitudes and heating rates. It is found that the internal friction dependence of frequency of HT100, M2052 and S316L all show a characteristic of Check function, and the resonance frequency has a negative linear correlation with the material physical parameters. The strain amplitude as well as heating rate has no obvious effect on the resonance frequencies of the materials, but significantly enhance the internal friction of the interface damping alloys such as M2052 and HT100, but small on single-phase alloys such as S316L. The internal friction mechanism for HT100 and M2052 are of static hysteresis at 350K, and HT100 and M2052 are applicable candidates for working at temperatures around 350K from the viewpoint of vibration reduction.


Sign in / Sign up

Export Citation Format

Share Document