Technology transfer opportunities : partnerships : a computer program for calculating mineral size distributions from X-ray diffraction data

Fact Sheet ◽  
1996 ◽  
Author(s):  
2015 ◽  
Vol 71 (a1) ◽  
pp. s287-s288
Author(s):  
Sigmund H. Neher ◽  
Chaouachi Marwen ◽  
Falenty Andrzej ◽  
Klein Helmut ◽  
Werner F. Kuhs

1987 ◽  
Vol 2 (4) ◽  
pp. 220-224 ◽  
Author(s):  
A. G. Alvarez ◽  
R. D. Bonetto ◽  
D. M. A. Guérin ◽  
A. Plastino ◽  
L. Rebollo Neira

AbstractCalculations of crystal size distributions in oriented clays (montmorillonite and kaolinite) are carried out utilizing X-ray diffraction data together with a method based on information theory. Two different procedures for dealing with the available data are compared. One of them involves some points of the corresponding spectrum, the other correlates the data by means of their moments.


1977 ◽  
Vol 10 (3) ◽  
pp. 206-208
Author(s):  
R. L. Girling ◽  
M. K. Wood ◽  
E. E. Abola

1989 ◽  
Vol 22 (4) ◽  
pp. 387-389 ◽  
Author(s):  
V. Petkov

RAD is an interactive computer program for radial distribution analysis of X-ray diffraction data from amorphous materials. RAD has been written in Fortran 77 and runs on IBM PC/XT/AT or compatible computers.


1992 ◽  
Vol 7 (1) ◽  
pp. 6-10 ◽  
Author(s):  
Balbir Singh ◽  
R.J. Gilkes

AbstractAn interactive computer program to display, process and analyze raw powder X-ray diffraction data is described. The program extensively employs graphic means of input and output with the help of “pop-up” windows and menus. In addition to those tasks that are common to most primary raw data analyzing programs, it performs many functions which are generally assigned to separate secondary programs. These functions include on-screen correction of d-spacing with reference to a standard compound, calculation of peak width and crystallite size, subtraction of patterns for differential X-ray diffraction and unrestricted overlay of patterns. The advantages of an integrated single program to process X-ray diffraction data in mineral research are illustrated and discussed.


1993 ◽  
Vol 8 (4) ◽  
pp. 214-215 ◽  
Author(s):  
T. Wieder

Near-surface triaxial strain/stress states in polycrystalline solids are required for a full tensorial treatment including all elements of the strain/stress tensor. A possible depth dependency of the strain/stress is at best observed by grazing incidence diffraction in Seemann–Bohlin geometry (SBG). The computer program SBGBBG calculates the full strain/stress tensor from X-ray diffraction data measured either in SBG or in Bragg–Brentano geometry (BBG). At present SBGBBG is applicable only on texture-free materials.


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


Sign in / Sign up

Export Citation Format

Share Document