scholarly journals A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands

2000 ◽  
Author(s):  
Philip L. Hageman ◽  
Paul H. Briggs
Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 365
Author(s):  
Alison S. Cramer ◽  
Wendy M. Calvin ◽  
Scott W. McCoy ◽  
Ronald J. Breitmeyer ◽  
Marja Haagsma ◽  
...  

Weathering and transport of potentially acid generating material (PAGM) at abandoned mines can degrade downstream environments and contaminate water resources. Monitoring the thousands of abandoned mine lands (AMLs) for exposed PAGM using field surveys is time intensive. Here, we explore the use of Remotely Piloted Aerial Systems (RPASs) as a complementary remote sensing platform to map the spatial and temporal changes of PAGM across a mine waste rock pile on an AML. We focus on testing the ability of established supervised and unsupervised classification algorithms to map PAGM on imagery with very high spatial resolution, but low spectral sampling. At the Perry Canyon, NV, USA AML, we carried out six flights over a 29-month period, using a RPAS equipped with a 5-band multispectral sensor measuring in the visible to near infrared (400–1000 nm). We built six different 3 cm resolution orthorectified reflectance maps, and our tests using supervised and unsupervised classifications revealed benefits to each approach. Supervised classification schemes allowed accurate mapping of classes that lacked published spectral libraries, such as acid mine drainage (AMD) and efflorescent mineral salts (EMS). The unsupervised method produced similar maps of PAGM, as compared to supervised schemes, but with little user input. Our classified multi-temporal maps, validated with multiple field and lab-based methods, revealed persistent and slowly growing ‘hotspots’ of jarosite on the mine waste rock pile, whereas EMS exhibit more rapid fluctuations in extent. The mapping methods we detail for a RPAS carrying a broadband multispectral sensor can be applied extensively to AMLs. Our methods show promise to increase the spatial and temporal coverage of accurate maps critical for environmental monitoring and reclamation efforts over AMLs.


Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 303 ◽  
Author(s):  
Kerstin Kuhn ◽  
Jeannet A. Meima

In contrast to modern tailings from froth flotation, little is known about historic tailings from gravity separation. However, they may be of economic interest due to their higher metal grades compared to modern tailings. As an example for these types of historic tailings, the inner structure, as well as the economic potential (Pb, Zn, Cu, Ag, Sb), of the old Bergwerkswohlfahrt mine waste dump in Germany were studied. The investigations focused on textural, geochemical, and mineralogical properties. For this purpose, an extensive drilling program was undertaken. The drill cores were subsequently analyzed with a laser-induced breakdown spectroscopy (LIBS) core scanner to obtain the detailed spatial distribution of potentially valuable elements. The fine-sized residues could be differentiated into different layers, all of them including valuable metals in varying proportions. The strong variations in stratification and in metal distribution over short distances are caused by the batch-wise deposition of the tailings. This heterogeneity within short distances has to be taken into account for future exploration of these types of deposits. The application of a core scanner using LIBS is very convenient for detailed spatial analysis of drill cores, however, the calibration effort, particularly for heterogeneous sample material, is proportionally large. The valuable metal content for Bergwerkswohlfahrt was estimated to be 8000 metric tons of Pb and 610,000 ounces of Ag. Although of limited economic value, recycling might finance future remediation costs. Furthermore, the occurrence of historic tailings in nearby clusters may present further recycling opportunities.


Author(s):  
Lei Li ◽  
Zhi-Qiang Kang ◽  
Guang-Hua Sun ◽  
Ya-Nan Zhang

Sign in / Sign up

Export Citation Format

Share Document