scholarly journals Mapping Potentially Acid Generating Material on Abandoned Mine Lands Using Remotely Piloted Aerial Systems

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 365
Author(s):  
Alison S. Cramer ◽  
Wendy M. Calvin ◽  
Scott W. McCoy ◽  
Ronald J. Breitmeyer ◽  
Marja Haagsma ◽  
...  

Weathering and transport of potentially acid generating material (PAGM) at abandoned mines can degrade downstream environments and contaminate water resources. Monitoring the thousands of abandoned mine lands (AMLs) for exposed PAGM using field surveys is time intensive. Here, we explore the use of Remotely Piloted Aerial Systems (RPASs) as a complementary remote sensing platform to map the spatial and temporal changes of PAGM across a mine waste rock pile on an AML. We focus on testing the ability of established supervised and unsupervised classification algorithms to map PAGM on imagery with very high spatial resolution, but low spectral sampling. At the Perry Canyon, NV, USA AML, we carried out six flights over a 29-month period, using a RPAS equipped with a 5-band multispectral sensor measuring in the visible to near infrared (400–1000 nm). We built six different 3 cm resolution orthorectified reflectance maps, and our tests using supervised and unsupervised classifications revealed benefits to each approach. Supervised classification schemes allowed accurate mapping of classes that lacked published spectral libraries, such as acid mine drainage (AMD) and efflorescent mineral salts (EMS). The unsupervised method produced similar maps of PAGM, as compared to supervised schemes, but with little user input. Our classified multi-temporal maps, validated with multiple field and lab-based methods, revealed persistent and slowly growing ‘hotspots’ of jarosite on the mine waste rock pile, whereas EMS exhibit more rapid fluctuations in extent. The mapping methods we detail for a RPAS carrying a broadband multispectral sensor can be applied extensively to AMLs. Our methods show promise to increase the spatial and temporal coverage of accurate maps critical for environmental monitoring and reclamation efforts over AMLs.

2018 ◽  
Vol 150 ◽  
pp. 40-51 ◽  
Author(s):  
Christopher Power ◽  
Panagiotis Tsourlos ◽  
Murugan Ramasamy ◽  
Aristeidis Nivorlis ◽  
Martin Mkandawire

2015 ◽  
Vol 744-746 ◽  
pp. 1101-1108
Author(s):  
Meng Zhou Zhang ◽  
Zeng He Xu ◽  
Li Guo Jiang

As a long-term source of contaminant solutes, the flow of water within a waste rock pile containing reactive sulfide minerals significantly contributes to the solutes transportation. In this paper, a waste rock pile with the internal structures and grain size distribution from a typical waste dump is introduced as the geometric configuration. A numerical model is then applied to simulate unsaturated flow within a waste rock pile constructed with two primary materials. The simulations results show that the water movement within heterogeneous pile mainly depended on the internal structures. The flow of water can be controlled by the fine material layers within the coarse materials. These fine material layers form a capillary barrier which preventing the water infiltrate towards the centre of the pile. They can retain more water than coarse materials and form a ponding effect and/or percolation points within the pile.


2007 ◽  
Vol 22 (5) ◽  
pp. 1025-1038 ◽  
Author(s):  
Jens Søndergaard ◽  
Bo Elberling ◽  
Gert Asmund ◽  
Claus Gudum ◽  
Karl Martin Iversen

2019 ◽  
Vol 18 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Adrien Dimech ◽  
Michel Chouteau ◽  
Michel Aubertin ◽  
Bruno Bussière ◽  
Vincent Martin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document