scholarly journals Hydrologic balance, water quality, chemical-mass balance, and geochemical modeling of hyperalkaline ponds at Big Marsh, Chicago, Illinois, 2016–17

Author(s):  
Amy M. Gahala ◽  
Robert R. Seal ◽  
Nadine M. Piatak
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Liza K. McDonough ◽  
Karina T. Meredith ◽  
Chandima Nikagolla ◽  
Richard B. Banati

AbstractPoor drinking water quality in household wells is hypothesised as being a potential contributor to the high prevalence of chronic kidney disease of uncertain aetiology (CKDu) among the farming communities of the Medawachchiya area, Anuradhapura, Sri Lanka. One of the natural processes that can affect water quality is the dissolution of minerals contained within an aquifer by water–rock interactions (WRIs). Here we present a comprehensive assessment of WRIs and their influence on the water chemistry in household wells and spring waters in the Medawachchiya area by combining measurements of environmental isotopes, such as strontium, lithium and stable carbon isotopes and inorganic chemistry parameters, and modelling geochemical mass balance reactions between rainfall and groundwater samples. Our results reveal the presence of strontium, dissolved from both silicate and carbonate minerals, with high isotopic (87Sr/86Sr) ratios of up to 0.7316. Geochemical mass balance modelling and prior 87Sr/86Sr studies on the Wanni Complex bedrock suggest these strontium values may be the result of biotite dissolution. We also identify lithium and uranium contributed from the dissolution of silicates, albeit at concentrations too low to constitute a known health risk. In contrast, the levels of magnesium and calcium in our samples are high and demonstrate that, despite the felsic bedrock, well water chemistry in the Medawachchiya area is dominated by carbonate dissolution.


2001 ◽  
Vol 35 (25) ◽  
pp. 4347-4355 ◽  
Author(s):  
D Temesi ◽  
A Molnár ◽  
E Mészáros ◽  
T Feczkó ◽  
A Gelencsér ◽  
...  

2020 ◽  
Author(s):  
John Jamieson ◽  
Dennis Sanchez Mora ◽  
Ben Peterkin ◽  
Thibaut Barreyre ◽  
Javier Escartin ◽  
...  

2013 ◽  
Vol 10 (5) ◽  
pp. 5943-5974 ◽  
Author(s):  
I. Cartwright ◽  
B. Gilfedder ◽  
H. Hofmann

Abstract. This study compares geochemical and physical methods of estimating baseflow in the upper reaches of the Barwon River, southeast Australia. Estimates of baseflow from physical techniques such as local minima and recursive digital filters are higher than those based on chemical mass balance using continuous electrical conductivity (EC). Between 2001 and 2011 the baseflow flux calculated using chemical mass balance is between 1.8 × 103 and 1.5 × 104 ML yr−1 (15 to 25% of the total discharge in any one year) whereas recursive digital filters yield baseflow fluxes of 3.6 × 103 to 3.8 × 104 ML yr−1 (19 to 52% of discharge) and the local minimum method yields baseflow fluxes of 3.2 × 103 to 2.5 × 104 ML yr−1 (13 to 44% of discharge). These differences most probably reflect how the different techniques characterise baseflow. Physical methods probably aggregate much of the water from delayed sources as baseflow. However, as many delayed transient water stores (such as bank return flow or floodplain storage) are likely to be geochemically similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The mismatch between geochemical and physical estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months. Consistent with these interpretations, modelling of bank storage indicates that bank return flows provide water to the river for several weeks after flood events. EC vs. discharge variations during individual flow events also imply that an inflow of low EC water stored within the banks or on the floodplain occurs as discharge falls. The joint use of physical and geochemical techniques allows a better understanding of the different components of water that contribute to river flow, which is important for the management and protection of water resources.


Sign in / Sign up

Export Citation Format

Share Document