scholarly journals Structural and thermodynamic properties for the BaMn(Fe=V)F7 Fluoride glass system by using the Hybrid Reverse Monte Carlo simulation

2021 ◽  
Vol 67 (6 Nov-Dec) ◽  
Author(s):  
Sidi Mohammed Mesli ◽  
S. Heddar ◽  
M. Habchi ◽  
M. Kotbi ◽  
M. Ziane

The Hybrid Reverse Monte Carlo (HRMC) simulation has been widely used as a very useful method for displaying the pair partial distribution functions (PDFs) g(r) eliminating as soon as possible the artificial satellite peaks appear by the RMC simulation. The HRMC is an extension of the RMC algorithm, which introduces an energy penalty term (potential) in the acceptance criteria.The glass retains the structure presented by the liquid at the glass transition temperature Tg, and the thermodynamic properties are influenced by these structural modifications. We are interested in this study to apply the structural parameters g(r), obtained from HRMC simulation, to determine some structural and thermodynamic properties for the BaMn(Fe=V)F7 Fluoride glass.The calculated structural properties such as the running coordination number n(r) were in good agreement with coordination constraint. We suggest also that the structural parameters g(r) is a good tool to determine the thermodynamic properties as the energy of the system.

2020 ◽  
Vol 66 (3 May-Jun) ◽  
pp. 258
Author(s):  
M. Habchi ◽  
S. M. Mesli ◽  
M. Ziane ◽  
M. Kotbi

A detailed analysis of the hydration shells of the 9.26 molal LiCl aqueous solution at the intermediate metastable thermodynamic state between the liquid (300 k) and the glass (120 k). The structural modelling of the LiCl6H2O at the supercooled-liquid state is conducted employing the Hybrid Reverse Monte Carlo (HRMC) simulation in combination with the neutron scattering data. The obtained pair distribution functions and the running coordination number are used as interpretive tools to examine the repartition of the water molecules around ions of lithium and chloride. HRMC represents a powerful tool to get provide detailed information on the hydration shell structures through the obtained pair correlations.


1976 ◽  
Vol 29 (10) ◽  
pp. 2103 ◽  
Author(s):  
JE Lane ◽  
TH Spurling

The thermodynamic properties of the krypton/graphite interface have been evaluated by the grand canonical ensemble Monte Carlo method. Submonolayer adsorption isotherms have been calculated at temperatures of 77.31, 84.11 and 90.12 K, together with particle distribution functions, surface pressures and isosteric heats of adsorption. The results are compared with experiment and discussed in relation to the existence of surface phase transitions. The Monte Carlo adsorptions were used to check the error in assuming Henry's law adsorption at low pressure.


1975 ◽  
Vol 30 (1) ◽  
pp. 83-86 ◽  
Author(s):  
Chiara Margheritis ◽  
Cesare Sinistri

Abstract Molten CsBr was computer simulated tat 1 atm and four different temperatures using the Monte Carlo method. Structural and thermodynamic properties of the melt were obtained on the basis of pair potentials. In particular, radial distribution functions, volume, and energy with its coulomb, dipole-dipole, and repulsive components were determined. Separately, the polarization energy was also evaluated: this quantity increases with increasing temperature and ranges between 2 and 4% of the total energy.


2016 ◽  
Vol 230 (4) ◽  
Author(s):  
Janis Timoshenko ◽  
Andris Anspoks ◽  
Aleksandr Kalinko ◽  
Alexei Kuzmin

AbstractEXAFS spectroscopy is an element-specific method that can provide perhaps the most extensive information on the local atomic structure and lattice dynamics for a broad class of materials. Conventional methods of EXAFS data treatment are often limited to the nearest coordination shells of the absorbing atom due to the difficulties in accurate accounting for the large number of correlated structural parameters that have to be included in the analysis. In this study we overcome this problem by applying novel simulation-based method: reverse Monte Carlo simulations, coupled with the evolutionary algorithm and with a powerful signal processing technique – wavelet transform. This complex approach was applied to the analysis of the W L


Sign in / Sign up

Export Citation Format

Share Document