scholarly journals Electrostatic and magnetostatic fields of point dipoles revisited

2019 ◽  
Vol 65 (1) ◽  
pp. 71 ◽  
Author(s):  
Y. Muniz ◽  
Anderson José Fonseca ◽  
C. Farina

After reviewing how the Dirac delta contributions to the electrostatic and magnetostatic fields of a point electric dipole and a point magnetic dipole are usually introduced, we present an alternative procedure for obtaining these terms based on a regularization prescription similar to that used in the computation of the transverse and longitudinal delta functions. We think this method may be useful for the students in other analogous calculations.

1969 ◽  
Vol 51 (6) ◽  
pp. 2359-2362 ◽  
Author(s):  
Kenneth G. Kay ◽  
H. David Todd ◽  
Harris J. Silverstone

Quantum 20/20 ◽  
2019 ◽  
pp. 1-20
Author(s):  
Ian R. Kenyon

Basic experimental evidence is sketched: the black body radiation spectrum, the photoeffect, Compton scattering and electron diffraction; the Bohr model of the atom. Quantum mechanics is reviewed using the Copenhagen interpretation: eigenstates, observables, hermitian operators and expectation values are explained. Wave-particle duality, Schrödinger’s equation, and expressions for particle density and current are described. The uncertainty principle, the collapse of the wavefunction, Schrödinger’s cat and the no-cloning theorem are discussed. Dirac delta functions and the usage of wavepackets are explained. An introduction to state vectors in Hilbert space and the bra-ket notation is given. Abstracts of special relativity and Lorentz invariants follow. Minimal electromagnetic coupling and the gauge transformations are explained.


Author(s):  
J. Pierrus

This chapter begins by expressing the multipole expansion of the dynamic vector potential A ( r, t) in terms of electric and magnetic multipole moments. Differentiation of A ( r, t) leads directly to the fields E ( r, t) and B ( r, t), which have a component transporting energy away from the sources to infinity. This component is called electromagnetic radiation and it arises only when electric charges experience an acceleration. A range of questions deal with the various types of radiation, including electric dipole and magnetic dipole–electric quadrupole. Larmor’s formula is applied in both its non-relativistic and relativistic forms. Also considered are some applications involving antennas, antenna arrays and the scattering of radiation by a free electron.


Sign in / Sign up

Export Citation Format

Share Document