polymeric film
Recently Published Documents


TOTAL DOCUMENTS

377
(FIVE YEARS 85)

H-INDEX

32
(FIVE YEARS 3)

Author(s):  
NABIL ABDULLAH ◽  
AMIT B. PATIL

Objective: Voriconazole (VCZ) is a broad-spectrum antifungal medication that works by inhibiting fungal Cytochrome P450, preventing fungi growth. The current study aims at developing and characterizing an antifungal in situ film-forming polymeric solution spray containing VCZ for use in topical drug delivery systems. Methods: Optimized VCZ in situ polymeric film formulation was evaluated for Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), X-ray diffractometry (XRD), Scanning electron microscope (SEM), in vitro and in vivo, ex-vivo investigation using abdominal rat skin and stability studies. The in vivo antifungal activity of the advanced in situ film was examined in albino Wistar rats. Results: The optimized batch contained 22% Eudragit RS 100 (ERS) and 4% Sorbitol. Based on FTIR, XRD, SEM, and rheological studies. Formulation ingredients of VCZ loaded topical in situ polymeric film spray were observed to be compatible and showed no evidence of precipitation, deformation, or discoloration. Diffusion test (in vitro %), and ex-vivo drug diffusion % obtained 99.22%, and 97.45% respectively. The maximum inhibition zone was measured at 13±0.07 mm. The Wistar rat was employed as an animal model for skin irritation and antifungal studies. A study of short-term stability observed no significant modifications in the physical properties. Conclusion: The findings of the optimized VCZ topical in situ polymeric film spray formulation were satisfactory, demonstrating comparable improvement in superficial antifungal treatment.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8385
Author(s):  
Guzel Ziyatdinova ◽  
Ekaterina Guss ◽  
Elvira Yakupova

The design and fabrication of novel electrochemical sensors with high analytical and operational characteristics are one of the sustainable trends in modern analytical chemistry. Polymeric film formation by the electropolymerization of suitable monomers is one of the methods of sensors fabrication. Among a wide range of the substances able to polymerize, the phenolic ones are of theoretical and practical interest. The attention is focused on the sensors based on the electropolymerized natural phenolic antioxidants and their analytical application. The typical electropolymerization reaction schemes are discussed. Phenol electropolymerization leads to insulating coverage formation. Therefore, a combination of electropolymerized natural phenolic antioxidants and carbon nanomaterials as modifiers is of special interest. Carbon nanomaterials provide conductivity and a high working surface area of the electrode, while the polymeric film properties affect the selectivity and sensitivity of the sensor response for the target analyte or the group of structurally related compounds. The possibility of guided changes in the electrochemical response for the improvement of target compounds’ analytical characteristics has appeared. The analytical capabilities of sensors based on electropolymerized natural phenolic antioxidants and their future development in this field are discussed.


Author(s):  
Daniel-Eusebiu Cretu ◽  
Ciprian-Catalin Rusu ◽  
Radu Burlica ◽  
Oana Beniuga ◽  
Dragos Astanei ◽  
...  

2021 ◽  
Vol 272 ◽  
pp. 115366
Author(s):  
J.R. Leppe-Nerey ◽  
M.E. Nicho ◽  
F.Z. Sierra-Espinosa ◽  
F. Hernández-Guzmán ◽  
M. Fuentes-Pérez

2021 ◽  
Vol 1166 ◽  
pp. 57-64
Author(s):  
Tomohisa Kojima ◽  
Masahiro Suzuki ◽  
Mitsuo Notomi

The impact resistance improvement is important for window glass to protect people from injury. Although it has been proved that the impact resistance of a glass plate can be improved easily by fitting a thin polymeric film, its mechanism has not been clarified yet. The purpose of this study is to clarify the reinforcing mechanism of the impact resistance of a glass plate by fitting a polymeric film. To clarify it, a numerical simulation model was built using ANSYS Autodyn to simulate the dynamic fracture of a glass plate fitted with a polymeric film. The simulation model and results were examined by comparing them to the experimental result in the previous study. The Johnson-Holmquist (JH2) damage model was used for the constitutive law of the glass plate. A polymeric film with 0.2 mm thickness (3% with the glass plate) was modeled at the non-impact surface of the glass plate. The nodes of the glass plate at the interface with the film connected the nodes of the film by perfect bonding. By comparing the simulation results to the experiment, it was indicated the importance of modeling the remaining fragments of the glass plate and the adhesive layer of the film in simulating the dynamic fracture of the glass plate fitted with polymeric film.


Author(s):  
B. B. Zhou ◽  
P. R. Whelan ◽  
J. Ji ◽  
A. Shivayogimath ◽  
M. Rasmussen ◽  
...  

2021 ◽  
pp. 100534
Author(s):  
Shilun Gao ◽  
Andrew Cannon ◽  
Feiyuan Sun ◽  
Yiyang Pan ◽  
Dandan Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document