Ablation and mechanical investigation of carbon/rubber woven laminates for ultrahigh temperature applications

Author(s):  
Yanhui Liu ◽  
Chao Ma ◽  
Jingyu Su ◽  
Yong Li ◽  
Zhengshuai Yin
2008 ◽  
Vol 1128 ◽  
Author(s):  
Vsevolod I. Razumovskiy ◽  
Eyvaz I. Isaev ◽  
Andrei V. Ruban ◽  
Pavel A. Korzhavyi

AbstractPt-Sc alloys with the γ-γ′ microstructure are proposed as a basis for a new generation of Pt-based superalloys for ultrahigh-temperature applications. This alloy system was identified on the basis of first-principles calculations. Here we discuss the prospects of the Pt-Sc alloy system on the basis of calculated elastic properties, phonon spectra, and defect formation energies.


2014 ◽  
Vol 592-594 ◽  
pp. 906-911
Author(s):  
C. Smilin John Thas ◽  
S. Mukesh Ram Gautham

. High thermal conductivity of copper and carbon nano tubes are used in variety of thermal management applications to improve cooling performance. Deposition of copper over these nanotubes increases the hydrophilic wicking surface and increased conductivity and stiffness. The CNT coating and micro patterning are able to provide significant performance enhancements by reducing the surface superheat up to 72% . Conductivity can be increased further by wetting the wicks with conductive fluids. The nanofluids are of great use in this area. Ceramic nanofluid has a very good stability and silver nanofluid has a very good thermal conductivity and hence their mixture is of great use in high temperature applications. Adding of ceramics also ensure the stability of nanofluid suspensions and prevent coagulation. This paper suggests wetting the wicks with ceramic and silver nano fluid mixture in the ratio of 1:5 to increase conductivity and stability for high temperature applications further.


Sign in / Sign up

Export Citation Format

Share Document