alloy system
Recently Published Documents


TOTAL DOCUMENTS

1528
(FIVE YEARS 188)

H-INDEX

55
(FIVE YEARS 8)

2022 ◽  
Vol 210 ◽  
pp. 114470
Author(s):  
Pramote Thirathipviwat ◽  
Shigeo Sato ◽  
Gian Song ◽  
Jozef Bednarcik ◽  
Kornelius Nielsch ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 544
Author(s):  
Lehlogonolo Rudolf Kanyane ◽  
Abimbola Patricia Idowu Popoola ◽  
Sisa Pityana ◽  
Monnamme Tlotleng

The lives of many people around the world are impaired and shortened mostly by cardiovascular diseases (CVD). Despite the fact that medical interventions and surgical heart transplants may improve the lives of patients suffering from cardiovascular disease, the cost of treatments and securing a perfect donor are aspects that compel patients to consider cheaper and less invasive therapies. The use of synthetic biomaterials such as titanium-based implants are an alternative for cardiac repair and regeneration. In this work, an in situ development of Ti-Al-xNb alloys were synthesized via laser additive manufacturing for biomedical application. The effect of Nb composition on Ti-Al was investigated. The microstructural evolution was characterized using a scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). A potentiodynamic polarization technique was utilized to investigate the corrosion behavior of TiAl-Nb in 3.5% NaCl. The microhardness and corrosion behaviour of the synthesized Ti-Al-Nb alloys were found to be dependent on laser-processing parameters. The microhardness performance of the samples increased with an increase in the Nb feed rate to the Ti-Al alloy system. Maximum microhardness of 699.8 HVN was evident at 0.061 g/min while at 0.041 g/min the microhardness was 515.8 HVN at Nb gas carrier of 1L/min, respectively.


2022 ◽  
Vol 8 ◽  
Author(s):  
Yang Chen ◽  
Baobin Xie ◽  
Bin Liu ◽  
Yuankui Cao ◽  
Jia Li ◽  
...  

Compared with traditional alloys with one principal component up to 40–90%, multi-principal element alloys (MPEAs) were born in the complicated intermingling of traditional and non-traditional physical metallurgy, and brings us a great amount of excellent performances. Here, we would briefly summarize the potential applications in some key areas, which is helpful for latecomers to quickly and comprehensively understand this new alloy system. Especially, the applications of MPEAs in aerospace, industrial equipment, national defense, energy, navigation and so on are discussed roughly. Subsequently, several emerging areas have also been compared. Finally, some suggestions are given for the future development trend.


Author(s):  
Javier E. Hasbun ◽  
Lok C Lew Yan Voon ◽  
Morten Willatzen

Abstract An exact analytical model of charge dynamics for a chain of atoms with asymmetric hopping terms is presented. Analytic and numeric results are shown to give rise to similar dynamics in both the absence and presence of electron interactions. The chain model is further extended to the case of two atoms per cell (a perfect alloy system). This extension is further applied to contact electrification between two different atomic chains and the effect of increasing the magnitude of the contact transfer matrix element is studied.


Author(s):  
Martin Löbel ◽  
Thomas Lindner ◽  
Maximilian Grimm ◽  
Lisa-Marie Rymer ◽  
Thomas Lampke

AbstractHigh-entropy alloys (HEAs) have shown a wide range of promising structural and functional properties. By the application of coating technology, an economical exploitation can be achieved. The high wear and corrosion resistance of HEAs make them particularly interesting for the application as protective coatings. Especially for alloys with a high chromium content, a high corrosion resistance has been revealed. For the current investigations, the equimolar HEA CrFeCoNi with a single-phase face centered cubic structure is considered as a base alloy system. To increase the corrosion resistance as well as the hardness and strength, the influence of the alloying elements aluminum and molybdenum is analyzed. For the current investigations, the high kinetic process high-velocity oxygen fuel thermal spraying (HVOF) has been considered to produce coatings with a low porosity and oxide content. Feedstock is produced by inert gas atomization. The influence of the alloy composition on the microstructure, phase formation and resulting property profile is studied in detail. A detailed analysis of the corrosion resistance and underlying mechanisms is conducted. The pitting and passivation behavior are investigated by potentiodynamic polarization measurements in NaCl and H2SO4 electrolyte. A distinct improvement of the corrosion resistance can be achieved for the alloy Al0.3CrFeCoNiMo0.2.


2021 ◽  
pp. 163205
Author(s):  
Caixia Shan ◽  
Zheng Chen ◽  
Rujiang Wang ◽  
Meng Liu ◽  
Lixin Zhao ◽  
...  

Author(s):  
Janet M. Meier ◽  
Jiashi Miao ◽  
Song-Mao Liang ◽  
Jun Zhu ◽  
Chuan Zhang ◽  
...  

2021 ◽  
pp. 153445
Author(s):  
Jacqueline I. Reeve ◽  
Benjamin J. Schuessler ◽  
William E. Frazier ◽  
David P. Field ◽  
Vineet V. Joshi

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7150
Author(s):  
Hongming Li ◽  
Shuang Zhang ◽  
Yajun Zhao ◽  
Xiaona Li ◽  
Fushi Jiang ◽  
...  

Reaching simultaneously high mechanical strength and low electrical resistivity is difficult as both properties are based on similar microstructural mechanisms. In our previous work, a new parameter, the tensile strength-over-electrical resistivity ratio, is proposed to evaluate the matching of the two properties in Cu alloys. A specific ratio of 310 × 108 MPa·Ω−1·m−1, independent of the alloy system and thermal history, is obtained from Cu-Ni-Mo alloys, which actually points to the lower limit of prevailing Cu alloys possessing high strength and low resistivity. The present paper explores the origin of this specific ratio by introducing the dual-phase mechanical model of composite materials, assuming that the precipitate particles are mechanically mixed in the Cu solid solution matrix. The strength and resistivity of an alloy are respectively in series and parallel connections to those of the matrix and the precipitate. After ideally matching the contributions from the matrix and the precipitate, the alloy should at least reach half of the resistivity of pure Cu, i.e., 50%IACS, which is the lower limit for industrially accepted highly conductive Cu alloys. Under this condition, the specific 310 ratio is related to the precipitate-over-matrix ratios for strength and resistivity, which are both two times those of pure Cu.


Sign in / Sign up

Export Citation Format

Share Document