Failure Analysis Methodology for Li-Ion Incidents

Author(s):  
John Loud ◽  
Xiaoyun Hu

Abstract The purpose of this article is to lay out a scientific methodology for investigating lithium ion (Li-ion) product failures. The discussion provides possible causes for an overheating Li-ion cell failure and covers processes involved in preventing Li-ion incidents. Performing a scientific root cause failure analysis involves systematically performing the failure analysis, which is explained in detail, to eliminate branches from the fault tree and arrive at the root cause of a given failure. Statistical analysis of Li-ion cells is provided, along with a recall determination of issues in Li-ion cells. The article also presents snapshots from actual Li-ion investigations selected from hundreds of investigations that have been performed by the authors at Exponent as far back as 1995.

Author(s):  
Jake E. Klein ◽  
Lucas Copeland

Abstract By utilizing a NdYAG lamp pumped marking laser, along with unique mixes of specific acids, reproducible decapsulation of copper bonded devices without damage to the bond wires, packaging material, or to the silicon die circuitry itself can be achieved. With the copper bond wires, die, or substrate exposed, typical failure analysis methodology can then be applied to drive root cause failure analysis or device characterization.


Author(s):  
Bhanu Sood ◽  
Lucas Severn ◽  
Michael Osterman ◽  
Michael Pecht ◽  
Anton Bougaev ◽  
...  

Abstract A review of the prevalent degradation mechanisms in Lithium ion batteries is presented. Degradation and eventual failure in lithium-ion batteries can occur for a variety of dfferent reasons. Degradation in storage occurs primarily due to the self-discharge mechanisms, and is accelerated during storage at elevated temperatures. The degradation and failure during use conditions is generally accelerated due to the transient power requirements, the high frequency of charge/discharge cycles and differences between the state-of-charge and the depth of discharge influence the degradation and failure process. A step-by-step methodology for conducting a failure analysis of Lithion batteries is presented. The failure analysis methodology is illustrated using a decision-tree approach, which enables the user to evaluate and select the most appropriate techniques based on the observed battery characteristics. The techniques start with non-destructive and non-intrusive steps and shift to those that are more destructive and analytical in nature as information about the battery state is gained through a set of measurements and experimental techniques.


2014 ◽  
Vol 7 (1) ◽  
pp. 618-623 ◽  
Author(s):  
Eszter Voroshazi ◽  
Griet Uytterhoeven ◽  
Kjell Cnops ◽  
Thierry Conard ◽  
Paola Favia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document