Decapsulation of Copper Bonded Plastic Encapsulated Integrated Circuits Utilizing Laser Ablation and Mixed Acid Chemistry

Author(s):  
Jake E. Klein ◽  
Lucas Copeland

Abstract By utilizing a NdYAG lamp pumped marking laser, along with unique mixes of specific acids, reproducible decapsulation of copper bonded devices without damage to the bond wires, packaging material, or to the silicon die circuitry itself can be achieved. With the copper bond wires, die, or substrate exposed, typical failure analysis methodology can then be applied to drive root cause failure analysis or device characterization.

Author(s):  
John Loud ◽  
Xiaoyun Hu

Abstract The purpose of this article is to lay out a scientific methodology for investigating lithium ion (Li-ion) product failures. The discussion provides possible causes for an overheating Li-ion cell failure and covers processes involved in preventing Li-ion incidents. Performing a scientific root cause failure analysis involves systematically performing the failure analysis, which is explained in detail, to eliminate branches from the fault tree and arrive at the root cause of a given failure. Statistical analysis of Li-ion cells is provided, along with a recall determination of issues in Li-ion cells. The article also presents snapshots from actual Li-ion investigations selected from hundreds of investigations that have been performed by the authors at Exponent as far back as 1995.


Author(s):  
P. Schwindenhammer ◽  
H. Murray ◽  
P. Descamps ◽  
P. Poirier

Abstract Decapsulation of complex semiconductor packages for failure analysis is enhanced by laser ablation. If lasers are potentially dangerous for Integrated Circuits (IC) surface they also generate a thermal elevation of the package during the ablation process. During measurement of this temperature it was observed another and unexpected electrical phenomenon in the IC induced by laser. It is demonstrated that this new phenomenon is not thermally induced and occurs under certain ablation conditions.


2018 ◽  
Author(s):  
Harold Jeffrey M. Consigo ◽  
Ricardo S. Calanog ◽  
Melissa O. Caseria

Abstract Gallium Arsenide (GaAs) integrated circuits have become popular these days with superior speed/power products that permit the development of systems that otherwise would have made it impossible or impractical to construct using silicon semiconductors. However, failure analysis remains to be very challenging as GaAs material is easily dissolved when it is reacted with fuming nitric acid used during standard decapsulation process. By utilizing enhanced chemical decapsulation technique with mixture of fuming nitric acid and concentrated sulfuric acid at a low temperature backed with statistical analysis, successful plastic package decapsulation happens to be reproducible mainly for die level failure analysis purposes. The paper aims to develop a chemical decapsulation process with optimum parameters needed to successfully decapsulate plastic molded GaAs integrated circuits for die level failure analysis.


Author(s):  
Nathan Wang ◽  
Saunil Shah ◽  
Camille Garcia ◽  
Vicente Pasating ◽  
George Perreault

Abstract MEMS samples, with their relatively large size and weight, present a unique challenge to the failure analyst as they also included thin films and microstructures used in conventional integrated circuits. This paper describes how to accommodate the large MEMS structures without skimping on the microanalyses needed to get to the root cause. Investigations of tuning folk gyroscopes were used to demonstrate these new techniques.


2014 ◽  
Vol 7 (1) ◽  
pp. 618-623 ◽  
Author(s):  
Eszter Voroshazi ◽  
Griet Uytterhoeven ◽  
Kjell Cnops ◽  
Thierry Conard ◽  
Paola Favia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document