Tribological Requirements of Thermally Sprayed Coatings for Wear Resistant Applications

Author(s):  
S.D. Siegmann ◽  
O.C. Brandt ◽  
N.M. Margadant

Abstract During the last decades, improved understanding of tribological behavior of different material combinations led also to an intensified development of thermal spray applications. In the field of e.g. hard chromium replacement by thermal spraying, significant amount of work has been done and published world wide, however, the authors manly focused on only one tribological aspect like friction, abrasion, erosion, cavitation or corrosion, respectively. In real applications, often more than one of those factors influence the successful use of these coatings. Besides the bulk properties of the materials, the coating micro structure, which is strongly spray system dependent, needs to be considered and investigated. Higher functionality and reliability than conventional competitive coatings still has to be proved at laboratory scale and under field conditions for thermally sprayed coatings. This paper describes the state of the art of thermally sprayed coatings as alternatives for other coatings. Published literature data and a wide range of own tribological investigations and field tests, reveals the potential for other applications.

Author(s):  
E. Lugscheider ◽  
C. Herbst ◽  
A. Fischer

Abstract Thermally sprayed coatings of high performance thermoplastics are of interest espacially for the chemical industry for anti-corrosion applications at elevated temperatures. In this paper coatings of polyetherether-keton (PEEK) and polyphenylen-sulphide (PPS) have been produced by simple flamespraying. They have been investigated by optical metallography, FT-IR analysis and DSC-analysis. Among the coating properties also the "in-flight" particles have been studied by wipe-tests and FT-IR analysis in order to assess possible decomposition effects during spraying.


Sign in / Sign up

Export Citation Format

Share Document