Strain Gradient Plasticity Modeling to Evaluate Material Plastic Deformation Behavior During Cold Gas Dynamic Spray Process

Author(s):  
D. Dzhurinskiy ◽  
S. Dautov ◽  
P. Shornikov ◽  
I. Sh. Akhatov

Abstract Severe plastic deformation (SPD) is the main feature of the Cold Spray (CS) process; which might result in producing metal grain refinement under extensive hydrostatic pressure and high strain rate loading conditions. In this study; an anisotropic strain gradient plasticity model (SGP) is presented to predict materials behavior in CS process. The enhanced dislocation densities produced throughout particle deformation affect coating material properties and modify their thermodynamic characteristics and kinetic of resistance to plastic deformations. This study also demonstrates that the SGP model can describe the experimentally observed trends and account for homogenization of the accumulated strains under dynamic recrystallization conditions. The evolution of statistically stored dislocation density through the characteristic material length scale parameter is in good agreement with experimental results and data reported by other research groups. The proposed SGP modeling is suggested as an express method to evaluate the advanced coating and additively manufactured materials; and powder feedstock used in thermal spray and 3D manufacturing applications.

1999 ◽  
Vol 14 (9) ◽  
pp. 3784-3788 ◽  
Author(s):  
David C. C. Lam ◽  
Arthur C. M. Chong

Plastic deformation of metals is generally a function of the strain. Recently, both phenomenological and dislocation-based strain gradient plasticity laws were proposed after strain gradients were experimentally found to affect the plastic deformation of the metal. A strain gradient plasticity law is developed on the basis of molecular theory of yield for glassy polymers. A strain gradient plasticity modulus with temperature and molecular dependence is proposed and related to indentation hardness. The physics of the strain gradient plasticity in glassy polymer is then discussed in relation to the modulus.


2009 ◽  
Vol 24 (3) ◽  
pp. 1197-1207 ◽  
Author(s):  
B. Backes ◽  
Y.Y. Huang ◽  
M. Göken ◽  
K. Durst

In the present work a new equation to determine the internal material length scale for strain gradient plasticity theories from two independent experiments (uniaxial and nanoindentation tests) is introduced. The applicability of the presented equation is verified for conventional grained as well as for ultrafine-grained copper and brass with different amounts of prestraining. A significant decrease of the experimentally determined internal material length scale is found for increasing dislocation densities due to prestraining. Conventional mechanism strain gradient plasticity theory is used for simulating the indentation response, using experimentally determined material input data as the yield stress, the work-hardening behavior and the internal material length scale. The work-hardening behavior and the yield stress were taken from the uniaxial experiments, whereas the internal material length scale was calculated using the yield stress from the uniaxial experiment, the macroscopic hardness H0 and the length scale parameter h* following from the nanoindentation experiment. A good agreement between the measured and calculated load–displacement curve and the hardness is found independent of the material and the microstructure.


2006 ◽  
Author(s):  
Juan Gomez ◽  
Cemal Basaran

Strain gradient plasticity theories that have emerged during recent years to provide an explanation for size dependent behavior exhibited by some materials have also created a need for additional material parameters. In this study on Pb/Sn solder alloys the material length scale, which is needed for use in strain gradient plasticity type constitutive models, is determined. The value of length scale is in agreement with values available in the literature for different materials like copper, nickel and aluminum.


2006 ◽  
Vol 129 (2) ◽  
pp. 120-128 ◽  
Author(s):  
Juan Gomez ◽  
Cemal Basaran

Strain gradient plasticity theories that have emerged during recent years to provide an explanation for size dependent behavior exhibited by some materials have also created a need for additional material parameters. In this study on Pb∕Sn solder alloys’ material length scale, which is needed for use in strain gradient plasticity type constitutive models, is determined. The value of length scale is in agreement with values available in literature for different materials like copper, nickel, and aluminum.


2004 ◽  
Vol 126 (4) ◽  
pp. 679-684 ◽  
Author(s):  
Suhas S. Joshi ◽  
Shreyes N. Melkote

This paper aims to explain the size-effect in the Primary Deformation Zone (PDZ) in machining using strain gradient plasticity theory. Considering a parallel-sided shear zone configuration, models are formulated for the evaluation of strain gradient, density of geometrically necessary dislocations, shear strength and the specific shear energy. The analysis of deformation in the PDZ shows that the length of the shear plane represents the fundamental material length scale governing the size-effect. It also provides an estimate of the lower bound on the size-effect observed in the specific shear energy. The general trends predicted by the model are shown to agree well with the experimental values obtained from the literature.


Sign in / Sign up

Export Citation Format

Share Document